Вопрос задан 05.09.2023 в 23:00. Предмет Алгебра. Спрашивает Гречуха Илья.

Если (x0; y0) - решение системы уравнений 5(x-y)-3(x+y)=12 3(x-y)+5(x+y)=14 то значение выражения

x0+y0 равно
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Абдусалимов Юсуф.
Первый вариант решения если вы проходите замену переменных:
х-у=а, х+у=b
система 5a-3b=12
              3a+5b=14
система 15a-9b=36
              15a+25b=70
-9b-25b=36-70
-34b=-34
b=1
5a-3=12
5a=15
a=3
система х-у=3
              х+у=1
-у-у=3-1
-2у=2
у=-1
х-1=1
х=2
2-1=1
ответ 1.
второй способ:
система 5х-5у-3х-3у=12
              3х-3у+5х+5у=14
ситема 2х-8у=12
            8х+2у=14
система 8х-32у=48
              8х+2у=14
-32у-2у=48-14
-34у=34
у=-1
2х+8=12
2х=4
х=2
2+(-1)=1
ответ 1.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для найти значение x0 + y0, сначала решим данную систему уравнений:

  1. 5(x - y) - 3(x + y) = 12
  2. 3(x - y) + 5(x + y) = 14

Раскроем скобки:

  1. 5x - 5y - 3x - 3y = 12
  2. 3x - 3y + 5x + 5y = 14

Теперь сгруппируем по x и y:

  1. (5x - 3x) + (-5y - 3y) = 12
  2. (3x + 5x) + (-3y + 5y) = 14

Упростим уравнения:

  1. 2x - 8y = 12
  2. 8x + 2y = 14

Теперь можно решить эту систему методом подстановки или методом сложения/вычитания. Давайте воспользуемся методом сложения:

Умножим первое уравнение на 4 и второе на -1, чтобы избавиться от y при сложении:

  1. 4(2x - 8y) = 4(12)
  2. -1(8x + 2y) = -1(14)

Получим:

  1. 8x - 32y = 48
  2. -8x - 2y = -14

Теперь сложим эти уравнения:

(8x - 32y) + (-8x - 2y) = 48 - 14

Получим:

-34y = 34

Теперь разделим обе стороны на -34:

y = -1

Теперь, когда мы знаем значение y, можем найти значение x, подставив его в любое из исходных уравнений. Давайте воспользуемся первым уравнением:

2x - 8(-1) = 12

2x + 8 = 12

Выразим x:

2x = 12 - 8 2x = 4

x = 4 / 2 x = 2

Итак, решение системы уравнений:

x0 = 2 y0 = -1

Теперь найдем значение x0 + y0:

x0 + y0 = 2 + (-1) = 1

Ответ: x0 + y0 = 1.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос