Вопрос задан 07.11.2023 в 23:43. Предмет Алгебра. Спрашивает Терентьев Никита.

Пожалуйста дайте по быстрее ответ!!!!!!! 3. Алия собрала цветы: 6 ромашек и 7 незабудок.

Сколькими способами можно составить букет из 7 цветов, если: А) в букете 3 ромашки и 4 незабудки; В) в букете как минимум должны быть 4 незабудки?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Гура Коля.

Ответ:

  1. 4 незабудки 3 Ромашки
  2. 5 незабудок 2 Ромашек
  3. 6 незабудок 1 Ромашка

Объяснение:

  • Вывод 3способами

0 0
Отвечает Порывай Александра.

Ответ:

3 способами

Объяснение:

Ну тип там ну короче это логическая задача

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте рассмотрим оба ваших вопроса поочередно.

А) В букете должно быть 3 ромашки и 4 незабудки. Это задача комбинаторики. Выберем способ выбора 3 ромашек из 6 доступных и 4 незабудок из 7 доступных. Для этого мы можем использовать биномиальные коэффициенты (комбинаторные числа). Комбинаторный коэффициент "C(n, k)" показывает, сколькими способами можно выбрать "k" элементов из "n". В данном случае:

Количество способов выбрать 3 ромашки из 6:

C(6, 3) = 6! / (3!(6-3)!) = 20 способов.

Количество способов выбрать 4 незабудки из 7:

C(7, 4) = 7! / (4!(7-4)!) = 35 способов.

Чтобы составить букет из 7 цветов, где 3 из них ромашки и 4 - незабудки, мы можем перемножить количество способов выбора ромашек и незабудок:

Всего способов составить букет: 20 (способов выбрать ромашки) * 35 (способов выбрать незабудки) = 700 способов.

Б) В букете должно быть как минимум 4 незабудки. В этом случае, можно рассмотреть два возможных сценария:

1. Все 7 цветов в букете - незабудки. 2. В букете 4 незабудки и 3 ромашки.

Для первого сценария способов всего один, так как все цветы - незабудки.

Для второго сценария, мы можем использовать комбинаторику, как в предыдущем ответе:

Количество способов выбрать 4 незабудки из 7:

C(7, 4) = 7! / (4!(7-4)!) = 35 способов.

Количество способов выбрать 3 ромашки из 6:

C(6, 3) = 6! / (3!(6-3)!) = 20 способов.

Чтобы найти общее количество способов, нужно сложить количество способов для каждого сценария:

Общее количество способов = 1 (все незабудки) + (35 * 20) (4 незабудки и 3 ромашки) = 701 способ.

Итак, есть 701 способ составить букет из 7 цветов, где как минимум 4 из них - незабудки.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос