Вопрос задан 25.09.2023 в 06:07. Предмет Алгебра. Спрашивает Ерин Ваня.

24.7. 1) { х+20у=37, 5у+х=7 2) {у-8х=-33, 7х-у=29 3) { 17 х +у =90 у - 23 х =-110​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Чекменев Александр.

Ответ:

1) (-3;2)

2)(4;-1)

3)(5;5)

Объяснение:


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve these systems of equations, you can use either the substitution method or the elimination method. I'll show you how to solve each of them using the elimination method:

  1. { x + 20y = 37 5y + x = 7

First, you can subtract the second equation from the first equation to eliminate x:

(x + 20y) - (5y + x) = 37 - 7

This simplifies to:

15y = 30

Now, divide both sides by 15 to solve for y:

y = 30 / 15 y = 2

Now that you have the value of y, you can substitute it into one of the original equations to solve for x. Let's use the second equation:

5y + x = 7 5(2) + x = 7

Now, solve for x:

10 + x = 7

Subtract 10 from both sides:

x = 7 - 10 x = -3

So, the solution to the first system of equations is x = -3 and y = 2.

  1. { y - 8x = -33 7x - y = 29

To eliminate y, add the two equations together:

(y - 8x) + (7x - y) = -33 + 29

This simplifies to:

-8x + 7x = -4

Combine like terms:

-x = -4

Now, divide both sides by -1 to solve for x:

x = 4

Now that you have the value of x, you can substitute it into one of the original equations to solve for y. Let's use the first equation:

y - 8x = -33 y - 8(4) = -33

Now, solve for y:

y - 32 = -33

Add 32 to both sides:

y = -33 + 32 y = -1

So, the solution to the second system of equations is x = 4 and y = -1.

  1. { 17x + y = 90 y - 23x = -110

To eliminate y, add the two equations together:

(17x + y) + (y - 23x) = 90 - 110

This simplifies to:

-6x = -20

Now, divide both sides by -6 to solve for x:

x = -20 / -6 x = 10/3

Now that you have the value of x, you can substitute it into one of the original equations to solve for y. Let's use the first equation:

17x + y = 90 17(10/3) + y = 90

Now, solve for y:

(170/3) + y = 90

Subtract (170/3) from both sides:

y = 90 - (170/3)

To subtract fractions, find a common denominator:

y = (270/3) - (170/3)

Now, subtract the numerators:

y = (270 - 170) / 3 y = 100 / 3

So, the solution to the third system of equations is x = 10/3 and y = 100/3.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос