
Решить систему {(х^2+2ху+у^2 )(х-у)=9 (х^2+у^2 )(х-у)=5)


Ответы на вопрос






To solve the system of equations, we need to find the values of 'x' and 'y' that satisfy both equations simultaneously. Let's proceed with the solution:
- (x^2 + 2xy + y^2)(x - y) = 9
- (x^2 + y^2)(x - y) = 5
We can simplify the second equation by dividing both sides by 9 to make it easier to work with:
- (x^2 + y^2)(x - y) = 5/9
Now, we have two equations with the same left-hand side:
- (x^2 + 2xy + y^2)(x - y) = 9
- (x^2 + y^2)(x - y) = 5/9
Since the left-hand sides are equal, we can set the right-hand sides equal to each other:
9 = 5/9
However, 9 is not equal to 5/9. This means that there is no solution to this system of equations. The two equations are inconsistent, and there are no values of 'x' and 'y' that can satisfy both equations simultaneously.
If there was a mistake in writing the system of equations or if there's additional context or information missing, please provide the correct equations or any relevant details for further assistance.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili