
F(x)=exX⁴, f'(x)>0 реши


Ответы на вопрос

f(x)=eˣх⁴, f'(x)>0
f'(x)=eˣх⁴+4х³eˣ=х³еˣ*(х+4)
х³еˣ*(х+4)>0, еˣ>0 для любого х
__-4________0_____
+ - +
х∈(-∞;-4)∪(0;+∞)



To solve the inequality f'(x) > 0 for the given function f(x) = e^x * X^4, we need to find the critical points of the function and determine the intervals where the derivative is positive.
Step 1: Find the derivative of the function f(x) with respect to x: f'(x) = d/dx (e^x * X^4) f'(x) = e^x * d/dx (X^4) f'(x) = e^x * 4X^3
Step 2: Set the derivative equal to zero to find the critical points: e^x * 4X^3 = 0
Since e^x is always positive and nonzero, we can divide both sides by e^x: 4X^3 = 0
Step 3: Solve for X: X = 0
Step 4: Determine the intervals where the derivative is positive: Now, we'll examine the intervals around the critical point X = 0. We can choose any value in these intervals and plug them into the derivative e^x * 4X^3 to determine its sign.
For X < 0: Choose X = -1 (any negative value) f'(-1) = e^(-1) * 4(-1)^3 = -4e^(-1) < 0
For 0 < X < 1: Choose X = 1/2 (any positive value less than 1) f'(1/2) = e^(1/2) * 4(1/2)^3 = e^(1/2) > 0
For X > 1: Choose X = 2 (any positive value greater than 1) f'(2) = e^2 * 4(2)^3 = 32e^2 > 0
Step 5: Final solution: The derivative f'(x) is greater than zero (f'(x) > 0) in the intervals (-∞, 0) and (1, ∞). In mathematical notation, the solution is:
(-∞, 0) U (1, ∞)
This means the function f(x) = e^x * X^4 is increasing in the intervals (-∞, 0) and (1, ∞).


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili