Вопрос задан 11.07.2023 в 17:01. Предмет Алгебра. Спрашивает Шнек Стас.

Решить 4 системы 1. x=2-y 3x-2y=11 2. x-3y=7 -7x+y=-69 3. -2x-7y=-22 4x-6y=4 4. x-3y=15 2x+5y=-3

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Бессмертный Август.

Ответ:

1). X=3 ;. y = -1

2) x = - 107/10. y = - 59/10

3) x = 4. y = 2

4) x=6. y = -3

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve the four systems of equations, we'll go through each one step by step. Let's start with the first system:

  1. x = 2 - y 3x - 2y = 11

Substitute the value of x from the first equation into the second equation:

3(2 - y) - 2y = 11 6 - 3y - 2y = 11 6 - 5y = 11 -5y = 11 - 6 -5y = 5 y = -1

Now, plug the value of y back into the first equation to find the value of x:

x = 2 - (-1) x = 2 + 1 x = 3

So, the solution to the first system is x = 3 and y = -1.

Next, let's move on to the second system:

  1. x - 3y = 7 -7x + y = -69

To eliminate one variable, multiply the first equation by 7 and the second equation by 1:

7x - 21y = 49 -7x + y = -69

Now, add the equations to eliminate x:

(7x - 21y) + (-7x + y) = 49 - 69 -20y = -20 y = 1

Now that we have the value of y, substitute it back into the first equation to find x:

x - 3(1) = 7 x - 3 = 7 x = 7 + 3 x = 10

The solution to the second system is x = 10 and y = 1.

Let's continue with the third system:

  1. -2x - 7y = -22 4x - 6y = 4

To eliminate one variable, multiply the first equation by 4 and the second equation by 2:

-8x - 28y = -88 8x - 12y = 8

Add the equations to eliminate x:

(-8x - 28y) + (8x - 12y) = -88 + 8 -40y = -80 y = -80 / -40 y = 2

Now, substitute the value of y back into the first equation to find x:

-2x - 7(2) = -22 -2x - 14 = -22 -2x = -22 + 14 -2x = -8 x = -8 / -2 x = 4

The solution to the third system is x = 4 and y = 2.

Finally, let's solve the fourth system:

  1. x - 3y = 15 2x + 5y = -3

To eliminate one variable, multiply the first equation by 2 and the second equation by 1:

2x - 6y = 30 2x + 5y = -3

Subtract the equations to eliminate x:

(2x - 6y) - (2x + 5y) = 30 - (-3) -11y = 33 y = 33 / -11 y = -3

Now, substitute the value of y back into the first equation to find x:

x - 3(-3) = 15 x + 9 = 15 x = 15 - 9 x = 6

The solution to the fourth system is x = 6 and y = -3.

To summarize:

  1. x = 3, y = -1
  2. x = 10, y = 1
  3. x = 4, y = 2
  4. x = 6, y = -3
0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос