
Найдите наибольшее и наименьшее значение функции y=1/3x^3-x^2+1 на отрезке -1;4


Ответы на вопрос

Ответ:
Абсолютный максимум в точке 4 равен 6 1/3 (4;6 1/3)
а абсолютный минимум равен -1/3 в точке х=2 (2;-1/3)
Объяснение:
y=1/3x^3-x^2+1 на отрезке -1;4
y'=1/3*3x²-2x = х(х-2)=0 ;
х=0; х=2
х = -1 -0,1 0 1 2 3 4
у= 5/9 Возр. 1 Убыв. -1/3 Возр. 6 1/3
-1(-1-2)=(+); -0,1(0,1-2)=(+); 0(0-2)=0; 1(1-2)=(-); 2(2-2)=0; 3(3-2)=(+);4(4-2)=(+);



Для нахождения наибольшего и наименьшего значения функции y = (1/3)x^3 - x^2 + 1 на отрезке [-1, 4], необходимо найти значения функции в концах отрезка и в точках, где её производная равна нулю.
1. Найдем значение функции в концах отрезка: - Для x = -1: y = (1/3)(-1)^3 - (-1)^2 + 1 = -1/3 - 1 + 1 = -1/3. - Для x = 4: y = (1/3)(4)^3 - (4)^2 + 1 = 64/3 - 16 + 1 = 49/3.
Таким образом, на отрезке [-1, 4] функция y = (1/3)x^3 - x^2 + 1 принимает наибольшее значение 49/3 (при x = 4) и наименьшее значение -1/3 (при x = -1).
2. Найдем точки, где производная функции равна нулю: y' = d/dx[(1/3)x^3 - x^2 + 1] = x^2 - 2x.
Решим уравнение x^2 - 2x = 0: x(x - 2) = 0, x = 0 или x = 2.
Таким образом, функция имеет стационарные точки при x = 0 и x = 2.
3. Найдем значения функции в стационарных точках: - Для x = 0: y = (1/3)(0)^3 - (0)^2 + 1 = 1. - Для x = 2: y = (1/3)(2)^3 - (2)^2 + 1 = 8/3 - 4 + 1 = -1/3.
Таким образом, функция y = (1/3)x^3 - x^2 + 1 принимает наибольшее значение 49/3 (при x = 4), наименьшее значение -1/3 (при x = -1) и имеет стационарные точки при x = 0 (значение функции равно 1) и x = 2 (значение функции равно -1/3).


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili