Вопрос задан 20.11.2023 в 16:05. Предмет Алгебра. Спрашивает Очнев Валера.

Даны два конечных множества A = {1;3;6;8;11} и B = {5;6;7;8;9}. Определять a. A∪ B ; b. A ∩ B; c.

A\B; d. B\A
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Комаровская Викуська.

Ответ:

Объяснение:

AUB={1;3;5;6;7;8;9;11}-  все элементы(числа)  которые есть либо в А либо в В

А∩В={6;8} - все элементы(числа)  которые есть и в А и в В  .

А\B ={1;3;11} - только те элементы множества А, которых нет в В

B\A ={5;7;9} - только те элементы множества B, которых нет в A

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Given Information:

Two finite sets are given: - Set A = {1, 3, 6, 8, 11} - Set B = {5, 6, 7, 8, 9}

We need to determine the following: a. A∪B (the union of sets A and B) b. A∩B (the intersection of sets A and B) c. A\B (the set difference of A and B) d. B\A (the set difference of B and A)

Solution:

a. To find the union of sets A and B (A∪B), we combine all the elements from both sets, removing any duplicates. The resulting set will contain all the unique elements from both sets. - A∪B = {1, 3, 5, 6, 7, 8, 9, 11}.

b. To find the intersection of sets A and B (A∩B), we identify the elements that are common to both sets. - A∩B = {6, 8}.

c. To find the set difference of A and B (A\B), we remove the elements of set B from set A. The resulting set will contain the elements that are in A but not in B. - A\B = {1, 3, 11}.

d. To find the set difference of B and A (B\A), we remove the elements of set A from set B. The resulting set will contain the elements that are in B but not in A. - B\A = {5, 7, 9}.

Therefore, the solutions are: a. A∪B = {1, 3, 5, 6, 7, 8, 9, 11} b. A∩B = {6, 8} c. A\B = {1, 3, 11} d. B\A = {5, 7, 9}

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос