
2 log_2 x <2+log_2 (x+3)


Ответы на вопрос





To solve the inequality , we need to isolate the variable on one side of the inequality. Here's the step-by-step solution:
Step 1: Combine the logarithms using logarithm rules.
Step 2: Use the properties of logarithms to combine the sum of the logarithms into a single logarithm.
Step 3: Remove the logarithm on the right side by taking both sides as the base of the logarithm.
Step 4: Use the property of logarithms that to simplify both sides.
Step 5: Bring all the terms to one side of the inequality to solve for .
Step 6: Expand and simplify.
Step 7: Combine like terms.
Step 8: Factor out the common term .
Now, we have a quadratic inequality. To find the solution, we'll use a sign chart:
Mark the critical points, where the expression on the left side becomes zero:
Test the intervals determined by the critical points and see where the expression is positive or negative:
- Test : Choose (arbitrary value less than -4) (positive)
- Test : Choose (arbitrary value between -4 and 0) (positive)
- Test : Choose (arbitrary value greater than 0) (negative)
Step 9: Analyze the results from the sign chart:
- The inequality is satisfied when or .
- The inequality is NOT satisfied when .
So, the solution to the inequality is .


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili