Вопрос задан 29.07.2023 в 08:42. Предмет Алгебра. Спрашивает Корецкая Ольга.

Найдите произведение xy из системы уравнений 2x²-3xy+y²=21 2x-y=7

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Свидерская Юлия.
Х=4
у=1
х*у=4*1=4
Ответ: 4

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данной системы уравнений, мы можем использовать метод подстановки или метод исключения. Но перед этим, давайте найдем значение переменной y из второго уравнения:

Уравнение 2: 2x - y = 7

Отсюда можно выразить y через x:

y = 2x - 7

Теперь, чтобы найти значение переменной x, подставим полученное выражение для y в первое уравнение:

Уравнение 1: 2x² - 3xy + y² = 21

Подставим y:

2x² - 3x(2x - 7) + (2x - 7)² = 21

Раскроем скобки:

2x² - 6x² + 21x + 4x² - 28x + 49 = 21

Соберем коэффициенты x² и x:

(2x² - 6x² + 4x²) + (21x - 28x) + (49 - 21) = 21

  • 2x² - 7x + 28 = 0

Теперь решим квадратное уравнение относительно x. Мы можем использовать квадратную формулу:

x = (-b ± √(b² - 4ac)) / 2a

где a = -2, b = -7, c = 28

x = (7 ± √((-7)² - 4 * (-2) * 28)) / 2 * (-2)

x = (7 ± √(49 + 224)) / (-4)

x = (7 ± √273) / (-4)

Таким образом, получим два значения для x:

x₁ = (7 + √273) / (-4) x₂ = (7 - √273) / (-4)

Теперь вычислим соответствующие значения для y, используя уравнение (2):

y₁ = 2x₁ - 7 y₂ = 2x₂ - 7

Теперь найдем произведение xy для каждой пары значений (x, y):

xy₁ = x₁ * y₁ xy₂ = x₂ * y₂

Это позволит нам найти окончательные значения произведения xy из системы уравнений.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос