Вопрос задан 18.07.2023 в 01:24. Предмет Алгебра. Спрашивает Гарманова Даша.

1) 2[x]=0,48 2) [2x]=1,4 решение подробно!!!

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Демянчук Ангеліна.

Ответ:

1) 2х=0.48

0.48÷2=0.24

2) 2х=1.4

1.4÷2=0.7

0 0
Отвечает Анисимова Анастасия.

Ответ:

1)2х÷2=0,48÷2

х=0,48÷2

х=0, 4

2) 2х÷2=1,4÷2

х=1,4÷2

х=0,7

Как смогла

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve the equations, let's first clarify the notation used. It seems that "[x]" represents the floor function, which rounds down the given number to the nearest integer. For example, [2.8] = 2, [3.14] = 3, etc.

  1. 2[x] = 0.48

We need to find the value of "x" that satisfies this equation.

Step 1: Isolate the floor function. Divide both sides by 2: [x] = 0.48 / 2 [x] = 0.24

Step 2: Determine possible values of "x." The floor function rounds down to the nearest integer. So, the possible values of "x" will be within the interval [0.24, 1.24), as [0.24] = 0 and [1.24] = 1.

  1. [2x] = 1.4

Here, we have to find the value of "x" that satisfies the equation.

Step 1: Isolate the floor function. We have [2x] on the left side, which means it rounds down the value of 2x to the nearest integer.

Step 2: Determine possible values of "2x." To get the possible values of 2x, we need to consider that the floor function will give us 1 when the fractional part of 2x is greater than or equal to 0.4. So we can write the inequality:

0.4 ≤ {2x} < 1, where {2x} denotes the fractional part of 2x.

Step 3: Solve for "x." Let's consider the lower bound of the inequality: 0.4 ≤ {2x}

The fractional part {2x} is the decimal part of 2x, so we subtract the integer part of 2x to get it: {2x} = 2x - [2x]

Now, the inequality becomes: 0.4 ≤ 2x - [2x]

Since we already have a similar equation in the first part, let's use it to solve this one.

From the first equation: [2x] = 0.24 So, 2x - [2x] = 2x - 0.24

Now, we can set the inequality: 0.4 ≤ 2x - 0.24

Step 4: Solve for "x." 0.4 ≤ 2x - 0.24 Add 0.24 to both sides: 0.4 + 0.24 ≤ 2x 0.64 ≤ 2x Divide both sides by 2: 0.32 ≤ x

Now let's consider the upper bound of the inequality: {2x} < 1

Since {2x} = 2x - [2x], the inequality becomes: 2x - [2x] < 1

Step 5: Solve for "x." 2x - [2x] < 1 Using the first equation: [2x] = 0.24 2x - 0.24 < 1

Step 6: Solve for "x." 2x < 1.24 Divide both sides by 2: x < 0.62

Step 7: Combine the results. From Step 4, we found that 0.32 ≤ x. From Step 6, we found that x < 0.62.

So, the solution for the second equation is: 0.32 ≤ x < 0.62.

Remember, the values of "x" must be within this range to satisfy the given equation.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос