
1) 2[x]=0,48 2) [2x]=1,4 решение подробно!!!


Ответы на вопрос

Ответ:
1) 2х=0.48
0.48÷2=0.24
2) 2х=1.4
1.4÷2=0.7



Ответ:
1)2х÷2=0,48÷2
х=0,48÷2
х=0, 4
2) 2х÷2=1,4÷2
х=1,4÷2
х=0,7
Как смогла



To solve the equations, let's first clarify the notation used. It seems that "[x]" represents the floor function, which rounds down the given number to the nearest integer. For example, [2.8] = 2, [3.14] = 3, etc.
- 2[x] = 0.48
We need to find the value of "x" that satisfies this equation.
Step 1: Isolate the floor function. Divide both sides by 2: [x] = 0.48 / 2 [x] = 0.24
Step 2: Determine possible values of "x." The floor function rounds down to the nearest integer. So, the possible values of "x" will be within the interval [0.24, 1.24), as [0.24] = 0 and [1.24] = 1.
- [2x] = 1.4
Here, we have to find the value of "x" that satisfies the equation.
Step 1: Isolate the floor function. We have [2x] on the left side, which means it rounds down the value of 2x to the nearest integer.
Step 2: Determine possible values of "2x." To get the possible values of 2x, we need to consider that the floor function will give us 1 when the fractional part of 2x is greater than or equal to 0.4. So we can write the inequality:
0.4 ≤ {2x} < 1, where {2x} denotes the fractional part of 2x.
Step 3: Solve for "x." Let's consider the lower bound of the inequality: 0.4 ≤ {2x}
The fractional part {2x} is the decimal part of 2x, so we subtract the integer part of 2x to get it: {2x} = 2x - [2x]
Now, the inequality becomes: 0.4 ≤ 2x - [2x]
Since we already have a similar equation in the first part, let's use it to solve this one.
From the first equation: [2x] = 0.24 So, 2x - [2x] = 2x - 0.24
Now, we can set the inequality: 0.4 ≤ 2x - 0.24
Step 4: Solve for "x." 0.4 ≤ 2x - 0.24 Add 0.24 to both sides: 0.4 + 0.24 ≤ 2x 0.64 ≤ 2x Divide both sides by 2: 0.32 ≤ x
Now let's consider the upper bound of the inequality: {2x} < 1
Since {2x} = 2x - [2x], the inequality becomes: 2x - [2x] < 1
Step 5: Solve for "x." 2x - [2x] < 1 Using the first equation: [2x] = 0.24 2x - 0.24 < 1
Step 6: Solve for "x." 2x < 1.24 Divide both sides by 2: x < 0.62
Step 7: Combine the results. From Step 4, we found that 0.32 ≤ x. From Step 6, we found that x < 0.62.
So, the solution for the second equation is: 0.32 ≤ x < 0.62.
Remember, the values of "x" must be within this range to satisfy the given equation.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili