
Вопрос задан 07.12.2023 в 10:43.
Предмет Алгебра.
Спрашивает Хатуев Абдул.
Розв'яжіть нерівністьlog9(7-5x) ≤log9(3x+6)


Ответы на вопрос

Отвечает Даулетханова Жанель.
ОДЗ :
1) 7 - 5x > 0
- 5x > - 7
x < 1,4
2) 3x + 6 >0
3x > - 6
x > - 2
Окончательно : x ∈ ( - 2 ; 1,4)



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Щоб розв'язати нерівність log9(7-5x) ≤ log9(3x+6), спочатку переведемо її у еквівалентну форму, використовуючи властивості логарифмів.
Логарифм з основою 9 виражає степінь, до якої треба піднести 9, щоб отримати певне число. Таким чином, ми можемо переписати нерівність у вигляді:
7-5x ≤ 3x+6
Тепер розв'яжемо цю нерівність:
Додамо 5x до обох боків:
7 ≤ 8x + 6
Віднімемо 6 від обох боків:
1 ≤ 8x
Розділимо обидва боки на 8:
1/8 ≤ x
Таким чином, розв'язком заданої нерівності є x, що належать інтервалу [1/8, +∞).


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili