2x² - 8x + 6. 1. Дана функция у = 2х² А) Найдите координаты вершины парабо Б) Найдите точки
пересечения с осями кс В) Найдите ось симметрии параболы. Г) Постройте график функции.Ответы на вопрос
Ответ:
график представляет собой параболу. График можно задать по точкам х;у подставляя произвольное значение х, определяем чему равен у. Или используя свойства параболы определяем точки пересечения с осями координат, находим координаты вершины параболы.

Function Analysis: y = 2x² - 8x + 6
To analyze the given function, let's go through each question step by step.
A) Finding the Vertex: The vertex of a parabola can be found using the formula: x = -b / (2a), where a and b are the coefficients of the quadratic equation.
In this case, the quadratic equation is y = 2x² - 8x + 6. Comparing it to the standard form of a quadratic equation (y = ax² + bx + c), we can see that a = 2, b = -8, and c = 6.
Using the formula, we can find the x-coordinate of the vertex: x = -(-8) / (2 * 2) = 8 / 4 = 2.
To find the y-coordinate of the vertex, substitute the x-coordinate back into the equation: y = 2(2)² - 8(2) + 6 = 2(4) - 16 + 6 = 8 - 16 + 6 = -2.
Therefore, the coordinates of the vertex are (2, -2).
B) Finding the x-intercepts (points of intersection with the x-axis): To find the x-intercepts, we set y = 0 and solve for x.
Setting y = 0 in the equation 2x² - 8x + 6 = 0, we get a quadratic equation: 2x² - 8x + 6 = 0.
To solve this quadratic equation, we can use factoring, completing the square, or the quadratic formula. Let's use the quadratic formula: x = (-b ± √(b² - 4ac)) / (2a).
Plugging in the values a = 2, b = -8, and c = 6, we get: x = (-(-8) ± √((-8)² - 4 * 2 * 6)) / (2 * 2) = (8 ± √(64 - 48)) / 4 = (8 ± √16) / 4 = (8 ± 4) / 4.
This gives us two possible solutions for x: x₁ = (8 + 4) / 4 = 12 / 4 = 3, x₂ = (8 - 4) / 4 = 4 / 4 = 1.
Therefore, the points of intersection with the x-axis are (3, 0) and (1, 0).
C) Finding the axis of symmetry: The axis of symmetry is a vertical line that passes through the vertex of the parabola. Its equation can be found using the formula x = -b / (2a), where a and b are the coefficients of the quadratic equation.
In this case, the quadratic equation is y = 2x² - 8x + 6. Comparing it to the standard form of a quadratic equation (y = ax² + bx + c), we can see that a = 2 and b = -8.
Using the formula, we can find the equation of the axis of symmetry: x = -(-8) / (2 * 2) = 8 / 4 = 2.
Therefore, the equation of the axis of symmetry is x = 2.
D) Graphing the function: To graph the function y = 2x² - 8x + 6, we can start by plotting the vertex and the x-intercepts we found earlier.
The vertex is located at (2, -2), and the x-intercepts are at (3, 0) and (1, 0).
Next, we can find a few more points by substituting some x-values into the equation and calculating the corresponding y-values. For example, when x = 0, y = 2(0)² - 8(0) + 6 = 6. So we have the point (0, 6).
Plotting these points on a graph and connecting them with a smooth curve will give us the graph of the function y = 2x² - 8x + 6.

Please note that the graph is a rough approximation and may not be perfectly accurate.
I hope this helps! Let me know if you have any further questions.
Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
