
Обчисліть значення похідної даної функції в точці х0 1)f(x)=x^2-4x+1,x0=1 2)f(x)cosx+sinx,x0 =
π/4 3) f(x)=2x+√x, x0=9

Ответы на вопрос

Ответ:
1
2
3



1) f(x) = x^2 - 4x + 1, x0 = 1
To find the derivative of the given function f(x) = x^2 - 4x + 1 at the point x0 = 1, we can use the power rule of differentiation. The power rule states that if we have a function of the form f(x) = x^n, then its derivative is given by f'(x) = nx^(n-1).
Here, the function f(x) = x^2 - 4x + 1, so we can differentiate each term separately:
f'(x) = (2x^1) - (4x^0) + (0) = 2x - 4
Now, to find the value of the derivative at x0 = 1, we substitute x = 1 into the derivative expression:
f'(1) = 2(1) - 4 = -2
Therefore, the value of the derivative of f(x) = x^2 - 4x + 1 at x0 = 1 is -2.
2) f(x) = cos(x) + sin(x), x0 = π/4
To find the derivative of the given function f(x) = cos(x) + sin(x) at the point x0 = π/4, we can again use the power rule and the derivative rules for trigonometric functions.
The derivative of cos(x) is -sin(x), and the derivative of sin(x) is cos(x). Therefore, the derivative of f(x) = cos(x) + sin(x) is:
f'(x) = -sin(x) + cos(x)
Now, let's find the value of the derivative at x0 = π/4:
f'(π/4) = -sin(π/4) + cos(π/4)
Using the values of sin(π/4) = sqrt(2)/2 and cos(π/4) = sqrt(2)/2, we can simplify the expression:
f'(π/4) = -(sqrt(2)/2) + sqrt(2)/2
The two terms cancel out, and we're left with:
f'(π/4) = 0
Therefore, the value of the derivative of f(x) = cos(x) + sin(x) at x0 = π/4 is 0.
3) f(x) = 2x + √x, x0 = 9
To find the derivative of the given function f(x) = 2x + √x at the point x0 = 9, we can again apply the power rule and the chain rule.
The derivative of 2x is simply 2. For the term √x, we can rewrite it as x^(1/2) and apply the power rule to get (1/2)x^(-1/2).
Therefore, the derivative of f(x) = 2x + √x is:
f'(x) = 2 + (1/2)x^(-1/2)
Now, let's find the value of the derivative at x0 = 9:
f'(9) = 2 + (1/2)(9)^(-1/2)
To simplify the expression, we need to calculate (9)^(-1


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili