Вопрос задан 04.11.2023 в 11:06. Предмет Алгебра. Спрашивает Юринов Борис.

Найти наибольшее и наименьшее значение функции f(x)=2x^2+16x+3 на промежутке [-5,-1]

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Саликаева Евгения.

Ответ:

fmin = -29, fmax = -11

Объяснение:

y = 2·x2+16·x+3

[-5;-1]

Необходимое условие экстремума функции одной переменной.

Уравнение f'0(x*) = 0 - это необходимое условие экстремума функции одной переменной, т.е. в точке x* первая производная функции должна обращаться в нуль. Оно выделяет стационарные точки xс, в которых функция не возрастает и не убывает.

Достаточное условие экстремума функции одной переменной.

Пусть f0(x) дважды дифференцируемая по x, принадлежащему множеству D. Если в точке x* выполняется условие:

f'0(x*) = 0

f''0(x*) > 0

то точка x* является точкой локального (глобального) минимума функции.

Если в точке x* выполняется условие:

f'0(x*) = 0

f''0(x*) < 0

то точка x* - локальный (глобальный) максимум.

Решение.

Находим первую производную функции:

y' = 4·x+16

Приравниваем ее к нулю:

4·x+16 = 0

x1 = -4

Вычисляем значения функции на концах интервала

f(-4) = -29

f(-5) = -27

f(-1) = -11

Ответ:

fmin = -29, fmax = -11

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения наибольшего и наименьшего значения функции f(x) = 2x^2 + 16x + 3 на промежутке [-5, -1] необходимо найти значения функции в крайних точках этого промежутка и в точках, где производная функции равна нулю.

1. Найдем значения функции в крайних точках промежутка: - Подставим x = -5 в уравнение f(x) = 2x^2 + 16

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос