
1)cos x/3 =- √2/2 2)sin(2x+П/4)= √3/2 3)2cos(x-П/6)= √3 4)tg(x+П/3)- √3=0


Ответы на вопрос

Ответ:
решение смотри на фотографии





To solve these trigonometric equations, you'll need to find the values of x that satisfy each equation. I'll provide the solutions step by step:
cos(x/3) = -√2/2 First, find the reference angle whose cosine is √2/2, which is π/4 radians. Since cos(x) = cos(-x), we can ignore the negative sign. So, x/3 = π/4.
Now, solve for x: x = π/4 * 3 x = 3π/4
sin(2x + π/4) = √3/2 Find the reference angle whose sine is √3/2, which is π/3 radians. So, 2x + π/4 = π/3.
Now, solve for x: 2x = π/3 - π/4 2x = (4π - 3π) / 12 2x = π / 12
Divide by 2: x = π / 24
2cos(x - π/6) = √3 First, divide both sides by 2: cos(x - π/6) = √3/2
Find the reference angle whose cosine is √3/2, which is π/6 radians. So, x - π/6 = π/6.
Now, solve for x: x = π/6 + π/6 x = 2π/6 x = π/3
tan(x + π/3) - √3 = 0 First, add √3 to both sides: tan(x + π/3) = √3
Find the reference angle whose tangent is √3, which is π/3 radians. So, x + π/3 = π/3.
Now, solve for x: x = π/3 - π/3 x = 0
So, the solutions to the equations are:
- x = 3π/4
- x = π/24
- x = π/3
- x = 0


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili