Вопрос задан 27.09.2023 в 18:20. Предмет Алгебра. Спрашивает Куджи Кристина.

Помогите решить найти число корней уравнениялежащих на отрезке [-п/2;3п/2]​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Баламут Аня.

Ответ:

4 корня

Объяснение:

2sin(3x)*sin(x) + cos(2x) + 2 = 0; x € [-Π/2; 3Π/2]

Формулы:

sin(3x) = 3sin(x) - 4sin^3(x)

cos(2x) = 1 - 2sin^2(x)

Подставляем формулы в уравнение:

2sin(x)*(3sin(x) - 4sin^3(x)) + 1 - 2sin^2(x) + 2 = 0

6sin^2(x) - 8sin^4(x) - 2sin^2(x) + 3 = 0

8sin^4(x) - 4sin^2(x) - 3 = 0

Получили биквадратное уравнение относительно sin(x).

Сделаем замену sin^2(x) = y ≥ 0 при любом х.

8y^2 - 4y - 3 = 0

D/4 = 2^2 - 8*(-3) = 4 + 24 = 28 = (2√7)^2

y1 = (2 - 2√7)/8 < 0 - не подходит.

y2 = (2 + 2√7)/8 = (1 + √7)/4

Возвращаемся к переменной х

sin^2(x) = (1+√7)/4

1) sin x = -√((1+√7)/4)

x1 = -arcsin [√((1+√7)/4)] + 2Πn, n € Z

x2 = π + arcsin[√((1+√7)/4)] + 2Πn, n € Z

2) sin x = √((1+√7)/4)

x3 = arcsin[√((1+√7)/4)] + 2Πk, k € Z

x4 = π - arcsin[√((1+√7)/4)] + 2Πk, k € Z

Теперь нам надо найти количество корней на промежутке [-Π/2; 3Π/2]

Найдем, в какую четверть попадает каждый из корней. Обозначим:

t = √((1+√7)/4) ≈ 0,95

Можно и не вычислять, самое главное, что t € (0; 1)

arcsin(0,95) ≈ 72° = 2Π/5

Тоже можно не вычислять, главное, что arcsin t € (0, Π/2)

x1 = -arcsin t € (-Π/2; 0)

x2 = Π + arcsin t € (Π; 3Π/2)

x3 = arcsin t € (0; Π/2)

x4 = Π - arcsin t € (Π/2; Π)

Как видим, все 4 корня попадают во все 4 четверти, то есть в промежуток.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы найти число корней уравнения на заданном интервале, нам нужно знать само уравнение. Пожалуйста, предоставьте уравнение, которое вы хотите исследовать, и я помогу вам определить количество корней на интервале [-π/2; 3π/2].

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос