Вопрос задан 29.07.2023 в 05:44. Предмет Алгебра. Спрашивает Маманжанова Диля.

(x²-x+-1)(x²-x-7)≤-5 розвязати нерівність

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Резниченко Ирина.

 (x^2-x-1)(x^2-x-7)\leq -5\\ \\ t=x^2-x\\ \\ (t-1)(t-7)\leq-5\\ \\ t^2-8t+7 \leq -5\\ \\ t^2-8t+12\leq 0\\ \\ D=64-48=16\\ \\ t_{1} =(8+4)/2=6\\ \\ t_{2} =(8-4)/2=2\\ \\ (t-6)(t-2)\leq 0\\ \\ (x^2-x-6)(x^2-x-2)\leq 0\\ \\ D=25;x_{1} =(1+5)/2=3;x_{2} =(1-5)/2=-2\\ \\ D=9;x_{1} =(1+3)/2=2;x_{2} =(1-3)/2=-1\\ \\ +++[-2]---[-1]+++[2]---[3]+++\\ \\ x\in[-2;-1]U[2;3]\\ \\

0 0
Отвечает Тарарин Саша.

 (x^{2} - x -1)(x^{2} - x- 7) \le -5 \\ \\ x^{2} - x = t \\ \\ (t - 1)(t-7) \le -5 \\ t^{2} -8t+ 12 \le 0 \\ D = 64 - 4 * 12 = 16 \\ \\ t_{1} = \dfrac{8 + 4}{2} = 6 \ ; \ t_{2} = \dfrac{8 - 4}{2} = 2 \\ \\ (t-6)(t-2) \le 0 \ (1) \\ \\ 2 \le t \le 6 \ \ \rightarrow \ \ 2 \le x^{2} - x \le 6 \ \ \rightarrow \ \ \begin{equation*} \begin{cases} x^{2} - x \ge 2 \\ x^{2} - x \le 6 \\ \end{cases}\end{equation*}


 \begin{equation*} \begin{cases} x^{2} - x -2 \ge 0 \ (a) \\ x^{2} - x -6 \le 0 \ (b) \\ \end{cases}\end{equation*}


 (a): \ x^{2} - x - 2 \ge 0 \\ D = 1 + 8 = 9 \\ \\ x_{1} = \dfrac{1 + 3}{2} = 2 \ ; \ x_{2} = \dfrac{1 - 3}{2} = - 1 \\ \\ (x-2)(x+1) \ge 0 \ (2) \\ x\in (-\infty ; -1]\cup [2;+\infty) \\ \\(b): \ x^{2} - x - 6 \le 0 \\ D = 1 + 24 = 25 \\ \\ x_{1} = \dfrac{1 + 5}{2} = 3 \ ; \ t_{2} = \dfrac{1 -5}{2} = - 2 \\ \\ (x-3)(x+2) \le 0 \ (3) \\ x\in [-2;3]


Пересечём множество решений (4):

 x\in[-2;-1]\cup [2;3]

Ответ: x∈[-2;-1]∪[2;3]





0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve the inequality (x2x1)(x2x7)5(x^2 - x - 1)(x^2 - x - 7) \leq -5, we need to find the values of xx that satisfy the inequality. Let's break down the solution step by step:

Step 1: Expand the expression on the left-hand side: (x2x1)(x2x7)=x42x38x2+6x+7(x^2 - x - 1)(x^2 - x - 7) = x^4 - 2x^3 - 8x^2 + 6x + 7.

Step 2: Rewrite the inequality as: x42x38x2+6x+75x^4 - 2x^3 - 8x^2 + 6x + 7 \leq -5.

Step 3: Move all terms to the left-hand side to set the inequality to zero: x42x38x2+6x+120x^4 - 2x^3 - 8x^2 + 6x + 12 \leq 0.

Now, we need to find the intervals of xx where the inequality holds true. To do this, we can use methods like factoring or testing intervals, but in this case, factoring doesn't seem straightforward, so we'll use testing intervals:

Step 4: Find critical points (where the expression equals zero) and test intervals:

To find critical points, we set the expression equal to zero: x42x38x2+6x+12=0x^4 - 2x^3 - 8x^2 + 6x + 12 = 0.

Unfortunately, finding exact solutions for this quartic equation is quite challenging. Instead, we'll use numerical methods to approximate the critical points. We'll graph the function and find its zeros approximately:

Graph the function y=x42x38x2+6x+12y = x^4 - 2x^3 - 8x^2 + 6x + 12 and identify the intervals where it is less than or equal to zero:

(You can use a graphing calculator or software to plot the function)

From the graph, we can see that the function intersects the x-axis at approximately x2.3x \approx -2.3, x0.6x \approx -0.6, x1.8x \approx 1.8, and x2.7x \approx 2.7.

Step 5: Test intervals to determine the solution:

Now, we'll test the intervals defined by the critical points and endpoints to see where the inequality holds true. We'll use test points in each interval and check if the expression is positive or negative.

  1. Test in the interval (,2.3)(- \infty, -2.3): Let's pick x=3x = -3 (a value less than -2.3) x42x38x2+6x+12=(3)42(3)38(3)2+6(3)+12102.56x^4 - 2x^3 - 8x^2 + 6x + 12 = (-3)^4 - 2(-3)^3 - 8(-3)^2 + 6(-3) + 12 \approx 102.56. Since 102.56>0102.56 > 0, this interval is not part of the solution.

  2. Test in the interval (2.3,0.6)(-2.3, -0.6): Let's pick x=1x = -1 (a value between -2.3 and -0.6) x42x38x2+6x+12=(1)42(1)38(1)2+6(1)+120.64x^4 - 2x^3 - 8x^2 + 6x + 12 = (-1)^4 - 2(-1)^3 - 8(-1)^2 + 6(-1) + 12 \approx 0.64. Since 0.64>00.64 > 0, this interval is not part of the solution.

  3. Test in the interval (0.6,1.8)(-0.6, 1.8): Let's pick x=0x = 0 (a value between -0.6 and 1.8) x42x38x2+6x+12=042(0)38(0)2+6(0)+12=12x^4 - 2x^3 - 8x^2 + 6x + 12 = 0^4 - 2(0)^3 - 8(0)^2 + 6(0) + 12 = 12. Since 12>012 > 0, this interval is not part of the solution.

  4. Test in the interval (1.8,2.7)(1.8, 2.7): Let's pick x=2x = 2 (a value between 1.8 and 2.7) x42x38x2+6x+12=242(2)38(2)2+6(2)+12=4x^4 - 2x^3 - 8x^2 + 6x + 12 = 2^4 - 2(2)^3 - 8(2)^2 + 6(2) + 12 = -4. Since 40-4 \leq 0, this interval is part of the solution.

  5. Test in the interval (2.7,)(2.7, \infty): Let's pick x=3x = 3 (a value greater than 2.7) x42x38x2+6x+12=342(3)38(3)2+6(3)+1213.56x^4 - 2x^3 - 8x^2 + 6x + 12 = 3^4 - 2(3)^3 - 8(3)^2 + 6(3) + 12 \approx 13.56

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Предметы
Задать вопрос