
Решить геравенство: 3^x+3^(|x|-1)≥4


Ответы на вопрос

Готово! Ответ на фото:




To solve the inequality , we need to consider two cases: and , since the absolute value makes the equation slightly more complex.
Case 1: For , , so the inequality becomes:
Now, we can simplify the inequality further:
Combining the terms:
Dividing both sides by :
Now, take the logarithm base 3 of both sides to isolate :
Since , the solution for this case is .
Case 2: For , , so the inequality becomes:
Now, we can simplify the inequality further:
Combining the terms:
To solve this inequality, let's introduce a new variable. Let , so the inequality becomes:
Now, we have a quadratic-like inequality. To solve it, we can multiply the whole inequality by (since for ):
Moving all terms to one side:
This is a quadratic inequality, and to find the intervals where it is true, we can use the quadratic formula:
Since and , we know that must be between 0 and 1. Therefore, the valid solution for this case is:
Now, let's convert this back into the range of values. Take the logarithm base 3 of both sides:
Thus, the solution for this case is .
Final solution: Combining the solutions from both cases, we have:
So, the inequality is satisfied for all values greater than or equal to 1 and for values less than 0.681.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili