(5-x)^2= 36-y^2= (3x+8y)^2= (2+y)^3= (3+2x)^2= 2*(x-y)+6*(x+y)= 3*(x+y)-2*(x-4y)=
(2a-0,3b)*(3a+5b)= (x-3)*(x^2-2x+3)= (x-2)*(4-x)=Ответы на вопрос

Let's solve each equation step-by-step:
(5-x)^2 = 36 Expand the equation: 25 - 10x + x^2 = 36 Rearrange to get a quadratic equation: x^2 - 10x - 11 = 0 Now, we can solve for x using the quadratic formula or factoring. Factoring the quadratic equation: (x - 11)(x + 1) = 0 So, x can be either 11 or -1.
36 - y^2 = 36 Subtract 36 from both sides: -y^2 = 0 Divide by -1: y^2 = 0 Take the square root: y = 0
(3x + 8y)^2 = 36 Expand the equation: 9x^2 + 48xy + 64y^2 = 36 Rearrange: 9x^2 + 48xy + 64y^2 - 36 = 0 This equation cannot be easily factored, so let's leave it as it is for now.
(2 + y)^3 = 36 Take the cube root of both sides: 2 + y = 3 Subtract 2 from both sides: y = 1
(3 + 2x)^2 = 36 Expand the equation: 9 + 12x + 4x^2 = 36 Rearrange: 4x^2 + 12x - 27 = 0 Divide by 4: x^2 + 3x - 27/4 = 0 Now, we can solve for x using the quadratic formula or factoring. Factoring the quadratic equation: (x + 6)(x - 9/2) = 0 So, x can be either -6 or 9/2.
2*(x - y) + 6*(x + y) = 36 Distribute: 2x - 2y + 6x + 6y = 36 Combine like terms: 8x + 4y = 36 Divide by 4: 2x + y = 9 Now, we have one equation with two variables, so we can't determine unique values for x and y.
3*(x + y) - 2*(x - 4y) = 36 Distribute: 3x + 3y - 2x + 8y = 36 Combine like terms: x + 11y = 36 Again, we have one equation with two variables, so we can't determine unique values for x and y.
(2a - 0.3b) * (3a + 5b) = 36 Expand the equation: 6a^2 + 10ab - 0.9ab - 1.5b^2 = 36 Simplify: 6a^2 + 9.1ab - 1.5b^2 - 36 = 0 This equation cannot be easily factored, so we'll leave it as it is for now.
(x - 3) * (x^2 - 2x + 3) = 36 Expand the second term: x^3 - 2x^2 + 3x - 3x^2 + 6x - 9 = 36 Combine like terms: x^3 - 5x^2 + 9x - 9 = 36 Subtract 36 from both sides: x^3 - 5x^2 + 9x - 45 = 0 This equation cannot be easily factored, so we'll leave it as it is for now.
(x - 2) * (4 - x) = 36 Expand the equation: 4x - 2x - 8 + 2 = 36 Simplify: 2x - 6 = 36 Add 6 to both sides: 2x = 42 Divide by 2: x = 21
In summary: x = 11 or -1 y = 0 x = -6 or 9/2 x + y = 9 (but we can't determine unique values for x and y) x + 11y = 36 (but we can't determine unique values for x and y) Equation 3: 9x^2 + 48xy + 64y^2 - 36 = 0 (we can't determine specific values for x and y) Equation 8: 6a^2 + 9.1ab - 1.5b^2 - 36 = 0 (we can't determine specific values for a and b) Equation 9: x^3 - 5x^2 + 9x - 45 = 0 (we can't determine specific values for x) x = 21
Please note that some of the equations have multiple solutions or cannot be easily solved without further information or context.
Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
