Вопрос задан 15.07.2023 в 20:58. Предмет Алгебра. Спрашивает Серик Аружан.

Решите (2y²-y+4)÷(-3y²-2y)

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Саметов Ростислав.
Тут нет решения... максимум сократить, но смысла нет
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данного выражения нам потребуется разделить (2y² - y + 4) на (-3y² - 2y). Для удобства работы, я предлагаю провести деление пошагово.

  1. Сначала проверим, можно ли сократить какие-либо общие множители у делимого и делителя. В данном случае общих множителей нет, поэтому переходим к следующему шагу.

  2. Запишем деление в стандартной форме:

    markdown
    ________________________

    -3y² - 2y | 2y² - y + 4

  3. Разделим первый терм в делимом (2y²) на первый терм в делителе (-3y²), чтобы получить первый частное:

    markdown
    ________

    -3y² - 2y | 2y² - y + 4 -2/3

  4. Умножим делитель (-3y² - 2y) на полученное частное (-2/3) и вычтем результат из делимого (2y² - y + 4):

    markdown
    -2/3(-3y² - 2y) ________________________

    -3y² - 2y | 2y² - y + 4 -2y² + 4y/3

  5. Проведем аналогичные операции для второго члена:

    markdown
    -2/3(-3y² - 2y) ________________________

    -3y² - 2y | 2y² - y + 4 -2y² + 4y/3


    markdown
    -11y + 4
  6. Так как больше нет оставшихся членов в делимом, результатом деления является:

    Частное: -2/3 Остаток: -11y + 4

Таким образом, результат деления (2y² - y + 4) ÷ (-3y² - 2y) равен -2/3 с остатком -11y + 4.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос