Вопрос задан 15.07.2023 в 12:38. Предмет Алгебра. Спрашивает Калачкова Лиза.

Разложить на множители выражение (a -b)^2-(c+d)^2+(a-b+c+d)! СРОЧНО!!!! ДАЮ 75 БАЛЛОВ!!!

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Гончарук Денис.

(a - b) {}^{2}  - (c + d) {}^{2}  + (a - b + c + d)

= ((a-b)-(c+d))((a-b)+(c+d))+(a-b+c+d)=(a-b-c-d)(a-b+c+d)+(a-b+c+d)

Выносим за скобки общий множитель a-b+c+d.

(a-b+c+d)(a-b-c-d+1).

Ответ: (a-b+c+d)(a-b-c-d+1).

Пример решён!

0 0
Отвечает Кот Илья.

Відповідь:

(а-b+c+d)(a-b-c-d+1)

Пояснення:

(a -b)²-(c+d)²+(a-b+c+d)=(а-b-(c+d))(а-b+(c+d))+(a-b+c+d)=(a-b-c-d)(а-b+c+d)+(a-b+c+d)=(а-b+c+d)(a-b-c-d+1)

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Хорошо, разложим выражение на множители.

(a - b)^2 - (c + d)^2 + (a - b + c + d)!

Первое слагаемое представляет собой разность двух квадратов, и мы можем применить формулу (a^2 - b^2) = (a - b)(a + b):

(a - b)^2 - (c + d)^2

= [(a - b) - (c + d)][(a - b) + (c + d)]

= (a - b - c - d)(a - b + c + d)

Теперь рассмотрим третье слагаемое, факториал (a - b + c + d)! не может быть разложен на множители в общем виде.

Таким образом, окончательное разложение выражения будет:

(a - b - c - d)(a - b + c + d) + (a - b + c + d)!

Надеюсь, эта информация будет полезной. Если у вас возникнут ещё вопросы, пожалуйста, сообщите мне.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос