Вопрос задан 08.07.2023 в 21:54. Предмет Алгебра. Спрашивает Пронина Александра.

Найдите целое решение неравенства 2хквадрат-7х-4<_0

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кудряшова Ольга.

Ответ:[-0,5;4]

Объяснение:

2x^2-7x-4<_0

2x^2-7x-4=0

D=49+4*4*2=81

X1=(7+9)/4=4

X2=(7-9)/4=-0,5

[-0,5;4]

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы найти целое решение неравенства 2x^2 - 7x - 4 ≤ 0, мы должны решить его с использованием метода знаков. Давайте разложим его на множители:

2x^2 - 7x - 4 = (2x + 1)(x - 4)

Мы можем использовать этот результат, чтобы определить знак выражения внутри скобок на разных интервалах числовой прямой.

  1. Когда x < -1/2:

    • (2x + 1) < 0
    • (x - 4) < 0 Поэтому (2x^2 - 7x - 4) < 0 для всех x < -1/2.
  2. Когда -1/2 ≤ x ≤ 4:

    • (2x + 1) < 0
    • (x - 4) > 0 Поэтому (2x^2 - 7x - 4) > 0 для всех -1/2 ≤ x ≤ 4.
  3. Когда x > 4:

    • (2x + 1) > 0
    • (x - 4) > 0 Поэтому (2x^2 - 7x - 4) < 0 для всех x > 4.

Таким образом, неравенство 2x^2 - 7x - 4 ≤ 0 выполняется только при x < -1/2 и x > 4.

Целые решения этого неравенства будут все целые числа между -1 и 0, и все целые числа больше 4.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос