Вопрос задан 08.07.2023 в 21:53. Предмет Алгебра. Спрашивает Белько Илья.

Розв'язати задачу: Для пошиття 6 костюмів та 8 комбінезонів використали 56,6м тканини. Скільки

метрів тканини потрібно для пошиття одного костюма і одного комбінезона окремо, якщо на 7 комбінезонів потрібно на 3,4м тканини більше, ніж на 5 костюмів? ​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Миронова Надя.

Ответ:

на комбінезоні потрібно 4,5 метри. На костюм витрачають 3,7 метри

Объяснение:

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Позначимо кількість метрів тканини для пошиття одного костюма як "х", а для пошиття одного комбінезона як "у".

Згідно умови задачі, для 6 костюмів та 8 комбінезонів використали 56,6 метрів тканини. Ми можемо записати це у вигляді рівняння:

6x + 8y = 56,6 (1)

Також, за умовою задачі, на 7 комбінезонів потрібно на 3,4 метри тканини більше, ніж на 5 костюмів. Ми можемо записати це у вигляді рівняння:

7y = 5x + 3,4 (2)

Тепер ми маємо систему з двох рівнянь (1) та (2), яку ми можемо вирішити для знаходження значень "х" та "у".

Спосіб 1: Використання методу заміщення

Можна використати метод заміщення, щоб вирішити цю систему. З рівняння (2) ми можемо виразити "x" через "y":

x = (7y - 3,4) / 5

Підставимо це значення "x" у рівняння (1):

6[(7y - 3,4) / 5] + 8y = 56,6

Розкриємо дужки і спростимо:

(42y - 20,4) / 5 + 8y = 56,6

(42y - 20,4 + 40y) / 5 = 56,6

(82y - 20,4) / 5 = 56,6

82y - 20,4 = 56,6 * 5

82y - 20,4 = 283

82y = 283 + 20,4

82y = 303,4

y = 303,4 / 82

y ≈ 3,7

Тепер, підставимо значення "y" у рівняння (2), щоб знайти значення "x":

7 * 3,7 = 5x + 3,4

25,9 = 5x + 3,4

5x = 25,9 - 3,4

5x = 22,5

x = 22,5 / 5

x = 4,5

Отже, для пошиття одного костюма потрібно 4,5 метра тканини, а для пошиття одного комбінезона - 3,7 метра тканини.

Спосіб 2: Використання матричного методу

Можна записати систему рівнянь (1) і (2) у вигляді матриць:

| 6 8 | | x | | 56,6 | | | x | | | | | 5 -7 | | y | = | -3,4 |

Розв'яжемо цю систему, обчисливши обернену матрицю для лівої частини:

| 6 8 | | 56,6 | | 1.5 | | | x | | = | | | 5 -7 | | -3,4 | | -0.6 |

Тепер, множимо обернену матрицю на праву частину:

| 1.5 | | 56,6 | | x | | | x | | = | | | -0.6 | | -3,4 | | y |

Отримаємо:

1.5 * 56,6 - 8 * (-3,4) = 85 - (-27.2) = 112.2 -0.6 * 56,6 + 5 * (-3,4) = -33.96 - 17 = -50.96

Тому, x = 112.2 та y = -50.96.

Очевидно, що y не може бути від'ємним, тому ми помилилися на деякому етапі виконання способу 2. Варто повернутися до способу 1, де ми отримали, що для пошиття одного костюма потрібно 4.5 метра тканини, а для пошиття одного комбінезона - 3.7 метра тканини.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Алгебра 4 Лисов Андрей

Последние заданные вопросы в категории Алгебра

Задать вопрос