
Вопрос задан 02.07.2023 в 18:39.
Предмет Алгебра.
Спрашивает Демчукова Юлия.
Найди координаты вершины параболы y = 0,1 + 2x + 17 ответ должен быть ( ... ; ... )


Ответы на вопрос

Отвечает Филимонова Екатерина.
Ответ:(-10;7)
Объяснение:
у=0,1х²+2х+17
m= -b/2а, m= -2/2*0,1= -2/0,2= -10.
n=0,1*(-10)²+2*(-10)+17=10-20+17=7.
(-10;7) - координаты вершины параболы.
Ответ:(-10;7)



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для нахождения координат вершины параболы, заданной в форме y = ax^2 + bx + c, можно воспользоваться формулами:
x_вершины = -b / (2a) y_вершины = c - (b^2 - 4ac) / (4a)
В вашем случае у нас есть уравнение y = 0,1 + 2x + 17, где a = 0, b = 2 и c = 17.
Подставим эти значения в формулы:
x_вершины = -2 / (2 * 0,1) = -2 / 0,2 = -10 y_вершины = 17 - (2^2 - 4 * 0,1 * 17) / (4 * 0,1) = 17 - (4 - 6,8) / 0,4 = 17 - (-2,8) / 0,4 = 17 + 7 = 24
Таким образом, координаты вершины параболы y = 0,1 + 2x + 17 равны (-10, 24).


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili