
3. Решите уравнение 7х2 – 8х + 1 = 0.


Ответы на вопрос

Ответ:
7*2-8x+1=0
14-8x+1=0
15-8x=0
-8x=-15
x=15/8
Объяснение:



Для решения уравнения 7х^2 – 8х + 1 = 0, мы можем использовать формулу квадратного корня.
Данное уравнение представляет собой квадратное уравнение вида ax^2 + bx + c = 0, где: a = 7 b = -8 c = 1
Формула квадратного корня гласит: х = (-b ± √(b^2 - 4ac)) / (2a)
Подставим значения в формулу: х = (-(-8) ± √((-8)^2 - 4 * 7 * 1)) / (2 * 7) х = (8 ± √(64 - 28)) / 14 х = (8 ± √36) / 14
Теперь мы можем найти два возможных значения x, используя положительный и отрицательный знак перед корнем: х₁ = (8 + √36) / 14 х₂ = (8 - √36) / 14
Выполняя вычисления, получаем: х₁ = (8 + 6) / 14 = 14 / 14 = 1 х₂ = (8 - 6) / 14 = 2 / 14 = 1/7
Таким образом, уравнение 7х^2 – 8х + 1 = 0 имеет два решения: x₁ = 1 и x₂ = 1/7.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili