Вопрос задан 04.11.2023 в 11:12. Предмет Алгебра. Спрашивает Горелова Екатерина.

Решите квадратное уравнение : x^2-2y-35=0 Дам 35 баллов, 5 звёзд и спасибо

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Литвинчук Саша.

Ответ:

-5; 7

Объяснение:

x^2-2y-35=0

a=1; b= -2; c= -35

D=b^2-4ac = (-2)^2-4*1*(-35) = 4 + 140 = 144

D>0, ⇒ уравнение имеет два корня.

X1 = (-b+\sqrt{D})/2a = (2 + 12) : 2 = 7

X2 = (-b-\sqrt{D})/2a = (2 - 12) : 2= -5

----------

Знаки деления выглядят у меня так: "/" и ":" Это на всякий случай; надеюсь помог.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данного квадратного уравнения x^2 - 2y - 35 = 0, мы можем использовать метод дискриминанта. Дискриминант квадратного уравнения ax^2 + bx + c = 0 вычисляется по формуле D = b^2 - 4ac. Затем, в зависимости от значения дискриминанта, мы можем определить тип и количество корней уравнения.

Вычисление дискриминанта

Для уравнения x^2 - 2y - 35 = 0, a = 1, b = 0 и c = -35. Подставим эти значения в формулу дискриминанта: D = (-2)^2 - 4 * 1 * (-35) D = 4 + 140 D = 144

Определение типа корней

Теперь, когда у нас есть значение дискриминанта D = 144, мы можем определить тип корней уравнения: - Если D > 0, то уравнение имеет два различных вещественных корня. - Если D = 0, то уравнение имеет один вещественный корень кратности два. - Если D < 0, то уравнение имеет два комплексных корня.

Решение уравнения

В данном случае, так как D = 144 > 0, уравнение имеет два различных вещественных корня. Для нахождения корней, мы можем использовать формулу: x = (-b ± √D) / (2a)

Подставим значения a = 1, b = 0 и c = -35 в формулу: x = (0 ± √144) / (2 * 1) x = ±12 / 2 x1 = 12 / 2 = 6 x2 = -12 / 2 = -6

Таким образом, корни уравнения x^2 - 2y - 35 = 0 равны x1 = 6 и x2 = -6.

Ответ: Уравнение x^2 - 2y - 35 = 0 имеет два различных вещественных корня: x1 = 6 и x2 = -6.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос