
Теплоход прошёл 72 км против течения реки и 56 км по течению, затратив на путь против течения на 1
ч больше, чем на путь по течению. Найдите собственную скорость теплохода, если скорость течения реки составляет 2 км/ч.

Ответы на вопрос

72/(х–2)–56/(х+2)=1
(72х+144–56х+112)/(х–2)(х+2)=1
(16х+256)/(х^2–4)=1
16х+256=х^2–4
х^2–4–16х–256=0
х^2–16х–260=0
Д=/256–4•1•(-260)=/1296=36
х1=(16+36)/2=26
х2=(16–36)/2=–10 (не может являться решением)
Ответ: собственная скорость теплохода 26км/ч



Problem Analysis
We are given that a boat traveled 72 km against the current of a river and 56 km with the current. The time taken to travel against the current was 1 hour more than the time taken to travel with the current. We need to find the speed of the boat.Solution
Let's assume the speed of the boat in still water is x km/h and the speed of the river current is 2 km/h.When the boat is traveling against the current, its effective speed is reduced by the speed of the current. So, the boat's speed against the current is (x - 2) km/h.
Similarly, when the boat is traveling with the current, its effective speed is increased by the speed of the current. So, the boat's speed with the current is (x + 2) km/h.
We are given that the time taken to travel against the current is 1 hour more than the time taken to travel with the current.
Using the formula distance = speed × time, we can set up the following equation:
72 / (x - 2) = 56 / (x + 2) + 1
Now, let's solve this equation to find the value of x.
Calculation
To solve the equation, we can cross-multiply and simplify:72(x + 2) = 56(x - 2) + (x - 2)(x + 2)
Expanding and simplifying:
72x + 144 = 56x - 112 + x^2 - 4
Rearranging and simplifying:
x^2 + 16x - 260 = 0
Now, we can solve this quadratic equation using the quadratic formula:
x = (-b ± √(b^2 - 4ac)) / (2a)
For our equation, a = 1, b = 16, and c = -260.
Substituting these values into the quadratic formula:
x = (-16 ± √(16^2 - 4(1)(-260))) / (2(1))
Simplifying further:
x = (-16 ± √(256 + 1040)) / 2
x = (-16 ± √(1296)) / 2
x = (-16 ± 36) / 2
So, we have two possible solutions for x:
x1 = (-16 + 36) / 2 = 20 / 2 = 10
x2 = (-16 - 36) / 2 = -52 / 2 = -26
Since the speed of the boat cannot be negative, we discard the negative solution.
Answer
Therefore, the speed of the boat in still water is 10 km/h.Please let me know if you need any further assistance!


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili