Вопрос задан 24.10.2023 в 15:36. Предмет Алгебра. Спрашивает Остапчук Валерия.

Представьте в виде произведения выражение: (2a + 1)2 − (a − 9)2.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Шереметьев Платон.

(2a + 1)² - (a - 9)² = (2a + 1 + a - 9)(2a + 1 - a + 9) = (3a - 8)(a + 10)

0 0
Отвечает Томилко Вика.

(2а + 1 ) 2 - (а - 9)2 = 4а +2 - 2а + 18 = 2а + 20 = 2(а + 10)

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для представления данного выражения в виде произведения мы можем воспользоваться разностью квадратов.

Выражение (2a + 1)² представляет собой квадрат суммы 2a и 1, а выражение (a - 9)² представляет собой квадрат разности a и 9.

Теперь давайте воспользуемся формулой разности квадратов, которая гласит:

(a² - b²) = (a + b)(a - b)

Применим эту формулу к нашему выражению:

(2a + 1)² - (a - 9)² = [(2a + 1) + (a - 9)][(2a + 1) - (a - 9)]

Теперь рассмотрим каждое слагаемое:

  1. (2a + 1) + (a - 9) = 3a - 8
  2. (2a + 1) - (a - 9) = a + 10

Теперь у нас есть два множителя:

(3a - 8)(a + 10)

Таким образом, данное выражение можно представить в виде произведения как (3a - 8)(a + 10).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос