Вопрос задан 09.10.2023 в 03:53. Предмет Алгебра. Спрашивает Радилов Анатолий.

Решите систему уравнений 5x=-3(y-1) 2x+3y=88

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Глухих Илья.
{5x+3y=3
{2x+3y=88
отнимем
3x=-85
x=-85/3
-170/3+3y=88
3y=88+170/3
3y=434/3
y=434/9
(-85/3;434/9)
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данной системы уравнений мы можем использовать метод замены или метод сложения/вычитания уравнений. Давайте воспользуемся методом замены.

Исходная система уравнений:

  1. 5x = -3(y - 1)
  2. 2x + 3y = 88

Сначала решим первое уравнение (1) относительно x:

5x = -3(y - 1)

Распишем скобки:

5x = -3y + 3

Теперь выразим x:

5x = -3y + 3

x = (-3y + 3)/5

Теперь подставим это выражение для x во второе уравнение (2):

2x + 3y = 88

2((-3y + 3)/5) + 3y = 88

Теперь умножим обе стороны на 5, чтобы избавиться от дроби:

2(-3y + 3) + 15y = 440

Раскроем скобки:

-6y + 6 + 15y = 440

Теперь объединим переменные y:

9y + 6 = 440

Выразим y:

9y = 440 - 6 9y = 434

y = 434 / 9 y = 48.2222 (приближенное значение)

Теперь, когда мы знаем значение y, мы можем найти значение x, используя первое уравнение (1):

x = (-3y + 3)/5 x = (-3 * 48.2222 + 3)/5 x = (-144.6666 + 3)/5 x = (-141.6666)/5 x ≈ -28.3333 (приближенное значение)

Итак, решение системы уравнений:

x ≈ -28.3333 y ≈ 48.2222

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос