Вопрос задан 28.09.2023 в 17:22. Предмет Алгебра. Спрашивает Савостьяненко Валерия.

Помогите решить неравенство !!! Если можно прикрепите фото решения на листочке ! |х^2-4|>-2х-1

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Вакилов Влад.

Ответ:

Объяснение:

!!!!!!!!!!!!!!!!!!!!!!!!!



0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте решим это неравенство шаг за шагом. Начнем с того, что модуль |x^2 - 4| можно разбить на два случая:

  1. x^2 - 4 > 0, тогда |x^2 - 4| = x^2 - 4.
  2. x^2 - 4 < 0, тогда |x^2 - 4| = -(x^2 - 4) = 4 - x^2.

Теперь мы можем записать неравенство в двух вариантах:

  1. Если x^2 - 4 > 0: x^2 - 4 > -2x - 1

  2. Если x^2 - 4 < 0: 4 - x^2 > -2x - 1

Давайте решим каждое из этих неравенств по отдельности:

  1. x^2 - 4 > -2x - 1

Сначала преобразуем его, перенося все члены на одну сторону:

x^2 + 2x - 3 > 0

Теперь факторизуем это квадратное уравнение:

(x + 3)(x - 1) > 0

Теперь определим знак этого выражения в каждом из интервалов:

  • Если x < -3, оба множителя отрицательны, и произведение положительно.
  • Если -3 < x < 1, первый множитель положительный, а второй отрицательный, и произведение отрицательно.
  • Если x > 1, оба множителя положительны, и произведение положительно.

Итак, нам нужны значения x в интервалах (-бесконечность, -3) и (1, +бесконечность).

  1. 4 - x^2 > -2x - 1

Сначала преобразуем его, перенося все члены на одну сторону:

x^2 - 2x - 3 < 0

Теперь факторизуем это квадратное уравнение:

(x - 3)(x + 1) < 0

Теперь определим знак этого выражения в каждом из интервалов:

  • Если x < -1, оба множителя отрицательны, и произведение положительно.
  • Если -1 < x < 3, первый множитель отрицательный, а второй положительный, и произведение отрицательно.
  • Если x > 3, оба множителя положительны, и произведение положительно.

Итак, нам нужны значения x в интервале (-1, 3).

Теперь объединим полученные интервалы: (-бесконечность, -3) объединено с (-1, 3) и (1, +бесконечность). Получаем окончательный ответ:

x ∈ (-бесконечность, -3) ∪ (-1, 3) ∪ (1, +бесконечность)

Пожалуйста, убедитесь, что мой ответ правильно интерпретирован, и проверьте его на графике, чтобы удостовериться в его точности.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос