Вопрос задан 29.07.2023 в 23:35. Предмет Алгебра. Спрашивает Перепечаенко Анюта.

Найти значение выражения (4х-25у/2√х-5√у) -3√у если √х+√у=4

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Конышев Степа.

Ответ:   8

Объяснение:

\sqrt{x}+\sqrt{y}=4

\dfrac{4x-25y}{2\sqrt{x}-5\sqrt{y}}-3\sqrt{y}=\dfrac{(2\sqrt{x}-5\sqrt{y})(2\sqrt{x}+5\sqrt{y})}{2\sqrt{x}-5\sqrt{y}}-3\sqrt{y}=

=2\sqrt{x}+5\sqrt{y}-3\sqrt{y}=2\sqrt{x}+2\sqrt{y}=2(\sqrt{x}+\sqrt{y})=2\cdot 4=8

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данной задачи, сначала мы найдем значения переменных x и y, затем подставим их в выражение и вычислим его значение.

У нас дано, что √x + √y = 4.

  1. Найдем значение выражения √x: √x = 4 - √y.

  2. Теперь возведем обе части уравнения в квадрат, чтобы избавиться от корня:

(√x)^2 = (4 - √y)^2, x = 16 - 8√y + y.

  1. Теперь подставим это значение x в исходное уравнение √x + √y = 4:

√(16 - 8√y + y) + √y = 4.

  1. Найдем значение уравнения √(16 - 8√y + y):

√(16 - 8√y + y) = √(16 - 6√y + y) = √(16 - 6√y) + √y.

  1. Подставим это значение в уравнение √x + √y = 4:

(√(16 - 6√y) + √y) + √y = 4.

  1. Упростим уравнение:

√(16 - 6√y) + 2√y = 4.

  1. Теперь решим уравнение относительно √y:

√(16 - 6√y) = 4 - 2√y, 16 - 6√y = (4 - 2√y)^2, 16 - 6√y = 16 - 16√y + 4y, 6√y - 4y = 0, 2y(3√y - 2) = 0.

Таким образом, получаем два варианта:

  1. y = 0,
  2. 3√y - 2 = 0.
  1. Решим второй вариант уравнения:

3√y = 2, √y = 2/3, y = (2/3)^2, y = 4/9.

  1. Теперь найдем значение x:

x = 16 - 8√y + y, x = 16 - 8 * √(4/9) + 4/9, x = 16 - 8 * (2/3) + 4/9, x = 16 - 16/3 + 4/9, x = (144 - 48 + 4) / 9, x = 100 / 9.

Таким образом, получаем два решения: y = 0 и y = 4/9, а соответствующие значения x будут x = 100/9 и x = 0.

Теперь, когда у нас есть значения переменных x и y, можем вычислить итоговое значение выражения:

(4x - 25y)/(2√x - 5√y) - 3√y.

  1. Подставим y = 0 и x = 0:

(4 * 0 - 25 * 0)/(2√0 - 5√0) - 3√0, 0/0 - 0, (неопределено).

  1. Подставим y = 4/9 и x = 100/9:

(4 * 100/9 - 25 * 4/9)/(2√(100/9) - 5√(4/9)) - 3√(4/9), (400/9 - 100/9)/(2 * 10/3 - 10/3) - 2/3, (300/9)/(20/3 - 10/3) - 2/3, (300/9)/(10/3) - 2/3, (300/9) * (3/10) - 2/3, 10 - 2/3, 10 - 2/3 = 28/3.

Таким образом, итоговое значение выражения при y = 4/9 и x = 100/9 будет равно 28/3.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос