
Решите рациональные неравенства 11-(x+1)^2≥x (2x-8)^2-4x(2x-8)≥0 x(x+5)-2>4x
(1/3)x^2+3x+6<0 x>(x^2/2)-4x+5(1/2)

Ответы на вопрос




11-(x+1)²≥x
11-x²-2x-1≥x
x²+3x-10≤0
x²+3x-10=0 D=49 √D=7
x₁=2 x₂=-5
(x-2)(x+5)≤0
-∞____+____-5___-____2____+____+∞ ⇒
Ответ: x∈[-5;2]
(2x-8)²-4x*(2x-8)≥0
(2x-8)(2x-8-4x)≥0
(2x-8)(-2x-8)≥0
-(2x-8)*(2x+8)≥0 |÷(-1)
4x²-64≤0 |÷4
x²-16≤0
(x-4)(x+4)≤0
-∞____+____-4____-____4____+____+∞ ⇒
Ответ: x∈[-4;4].
x*(x+5)-2>4x
x²+5x-2-4x>0
x²+x-2>0
x²+x-2=0 D=9 √D=3
x₁=1 x₂=-2 ⇒
(x-1)(x+2)>0
-∞____+____-2____-____1____+____+∞ ⇒
Ответ: x∈(-∞-2)U(1;+∞).
(1/3)*x²+3x+6<0 |×3
x²+9x+18<0
x²+9x+18=0 D=9 √D=3
x₁=-3 x₂=-6 ⇒
(x+3)(x+6)<0
-∞_____+_____-6_____-_____-3____+_____+∞ ⇒
Ответ: x∈(-6;-3).
x>(x²/2)-4x+5¹/₂
x>(x²/2)-4x+11/2 |×2
2x>x²-8x+11
x²-10x+11<0
x²-10x+11=0 D=56 √D=√56
x₁=5-√14 x₂=5+√14
-∞____+_____5-√14____-_____5+√14____+____+∞ ⇒
Ответ: x∈(5-√14;5+√14).



To solve rational inequalities, we need to find the intervals for which the given expressions are true. Let's solve each inequality step by step:
- 11 - (x + 1)^2 ≥ x First, expand the squared term: 11 - (x + 1)(x + 1) ≥ x
Simplify further: 11 - (x^2 + 2x + 1) ≥ x 11 - x^2 - 2x - 1 ≥ x
Combine like terms: 10 - x^2 - 2x ≥ x
Move all terms to one side of the inequality: 10 - x^2 - 2x - x ≥ 0 10 - x^2 - 3x ≥ 0
Now, set each factor equal to zero and find the critical points: 10 - x^2 - 3x = 0 -x^2 - 3x + 10 = 0
Using the quadratic formula, the critical points are: x = (-(-3) ± √((-3)^2 - 4*(-1)10)) / (2(-1)) x = (3 ± √(9 + 40)) / (-2) x = (3 ± √49) / (-2) x = (3 ± 7) / (-2)
So, the critical points are x = 5 and x = -2.
Now, we create a sign chart and test the intervals:
markdownInterval | x^2 + 3x - 10 | 10 - x^2 - 3x
----------------------------------------------
x < -2 | + | +
-2 < x < 5 | - | +
x > 5 | + | -
The solution is x < -2 or x > 5.
- (2x - 8)^2 - 4x(2x - 8) ≥ 0 First, factor the quadratic expression: (2x - 8)(2x - 8) - 4x(2x - 8) ≥ 0 (2x - 8)(2x - 8 - 4x) ≥ 0 (2x - 8)(-2x - 8) ≥ 0 -(2x - 8)^2 ≥ 0
Since the square of a real number is non-negative, the inequality is true for all real values of x. Thus, the solution is (-∞, +∞).
- x(x + 5) - 2 > 4x First, distribute x into the parenthesis: x^2 + 5x - 2 > 4x
Move all terms to one side of the inequality: x^2 + 5x - 4x - 2 > 0 x^2 + x - 2 > 0
Now, set the quadratic expression equal to zero and find the critical points: x^2 + x - 2 = 0
Using the quadratic formula, the critical points are: x = (-1 ± √(1 + 8)) / 2 x = (-1 ± √9) / 2 x = (-1 ± 3) / 2
So, the critical points are x = 1 and x = -2.
Now, we create a sign chart and test the intervals:
markdownInterval | x^2 + x - 2
--------------------------------
x < -2 | -
-2 < x < 1 | +
x > 1 | +
The solution is x < -2 or x > 1.
- (1/3)x^2 + 3x + 6 < 0 To solve this inequality, let's first multiply both sides by 3 to clear the fraction: x^2 + 9x + 18 < 0
Now, set the quadratic expression equal to zero and find the critical points: x^2 + 9x + 18 = 0
Using the quadratic formula, the critical points are: x = (-9 ± √(9^2 - 4118)) / 2 x = (-9 ± √(81 - 72)) / 2 x = (-9 ± √9) / 2 x = (-9 ± 3) / 2
So, the critical points are x = -6 and x = -3.
Now, we create a sign chart and test the intervals:
markdownInterval | x^2 + 9x + 18
--------------------------------
x < -6 | +
-6 < x < -3 | -
x > -3 | +
The solution is -6 < x < -3.
- x > (x^2/2) - 4x + 5/2 To solve this inequality, let's first move all terms to one side of the inequality: x - (x^2/2) + 4x - 5/2 > 0 (2x - x^2 + 8x - 5)/2 > 0 (10x - x^2 - 5)/2 > 0 (5 - x^2 + 10x)/2 > 0 (5 - x^2 + 10x) > 0 * 2 (Note: Multiplying both sides by a positive number doesn't change the inequality direction)
Now, set the quadratic expression equal to zero and find the critical points: x^2 - 10x + 5 = 0
Using the quadratic formula, the critical points are: x = (10 ± √(10^2 - 415)) / 2 x = (10 ± √(100 - 20)) / 2 x = (10 ± √80) / 2 x = (10 ± 4√5) / 2 x = 5 ± 2√5
So, the critical points are x = 5 + 2√5 and x = 5 - 2√5.
Now, we create a sign chart and test the intervals:
markdownInterval | 5 - x^2 + 10x
--------------------------------
x < 5 - 2√5 | -
5 - 2√5 < x < 5 + 2√5 | +
x > 5 + 2√5 | -
The solution is x < 5 - 2√5 or x > 5 + 2√5.
To summarize the solutions:
- x < -2 or x > 5
- (-∞, +∞)
- x < -2 or x > 1
- -6 < x < -3
- x < 5 - 2√5 or x > 5 + 2√5


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili