Вопрос задан 28.07.2023 в 20:18. Предмет Алгебра. Спрашивает Селянинова Ксения.

Решите рациональные неравенства 11-(x+1)^2≥x (2x-8)^2-4x(2x-8)≥0 x(x+5)-2>4x

(1/3)x^2+3x+6<0 x>(x^2/2)-4x+5(1/2)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Хайрисламов Дима.

 1)\; \; 11-(x+1)^2\geq x\\\\11-x^2-2x-1\geq x\\\\x^2+3x-10\leq 0\; ,\; \; x_1=-5\; ,\; x_2=2\; (teorema\; Vieta)\\\\znaki:\quad +++[-5\, ]---[\, 2\, ]+++\\\\x\in [-5,2\, ]\\\\2)\; \; (2x-8)^2-4x(2x-8)\geq 0\\\\4x^2-32x+64-8x^2+32x\geq 0\\\\-4x^2+64\geq 0\; |:(-4)\; \; \to \; \; x^2-16\leq 0\\\\(x-4)(x+4)\leq 0\; ,\qquad +++[-4\, ]---[\, 4\, ]+++\\\\x\in [-4,4\, ]\\\\3)\; \; x(x+5)-2>4x\\\\x^2+5x-4x-2>0\; \; \to \\\\x^2+x-2>0\; ,\; \; x_1=-2\; ,\; x_2=1\; (teorema\; Vieta)\\\\(x+2)(x-1)>0\quad +++(-2)---(1)+++\\\\x\in (-\infty ,-2)\cup (1,+\infty )

 4)\; \; \frac{1}{3}x^2+3x+6

0 0
Отвечает Джунь Ангелина.

11-(x+1)²≥x

11-x²-2x-1≥x

x²+3x-10≤0

x²+3x-10=0 D=49 √D=7

x₁=2 x₂=-5

(x-2)(x+5)≤0

-∞____+____-5___-____2____+____+∞ ⇒

Ответ: x∈[-5;2]

(2x-8)²-4x*(2x-8)≥0

(2x-8)(2x-8-4x)≥0

(2x-8)(-2x-8)≥0

-(2x-8)*(2x+8)≥0 |÷(-1)

4x²-64≤0 |÷4

x²-16≤0

(x-4)(x+4)≤0

-∞____+____-4____-____4____+____+∞ ⇒

Ответ: x∈[-4;4].

x*(x+5)-2>4x

x²+5x-2-4x>0

x²+x-2>0

x²+x-2=0 D=9 √D=3

x₁=1 x₂=-2 ⇒

(x-1)(x+2)>0

-∞____+____-2____-____1____+____+∞ ⇒

Ответ: x∈(-∞-2)U(1;+∞).

(1/3)*x²+3x+6<0 |×3

x²+9x+18<0

x²+9x+18=0 D=9 √D=3

x₁=-3 x₂=-6 ⇒

(x+3)(x+6)<0

-∞_____+_____-6_____-_____-3____+_____+∞ ⇒

Ответ: x∈(-6;-3).

x>(x²/2)-4x+5¹/₂

x>(x²/2)-4x+11/2 |×2

2x>x²-8x+11

x²-10x+11<0

x²-10x+11=0 D=56 √D=√56

x₁=5-√14 x₂=5+√14

-∞____+_____5-√14____-_____5+√14____+____+∞ ⇒

Ответ: x∈(5-√14;5+√14).

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve rational inequalities, we need to find the intervals for which the given expressions are true. Let's solve each inequality step by step:

  1. 11 - (x + 1)^2 ≥ x First, expand the squared term: 11 - (x + 1)(x + 1) ≥ x

Simplify further: 11 - (x^2 + 2x + 1) ≥ x 11 - x^2 - 2x - 1 ≥ x

Combine like terms: 10 - x^2 - 2x ≥ x

Move all terms to one side of the inequality: 10 - x^2 - 2x - x ≥ 0 10 - x^2 - 3x ≥ 0

Now, set each factor equal to zero and find the critical points: 10 - x^2 - 3x = 0 -x^2 - 3x + 10 = 0

Using the quadratic formula, the critical points are: x = (-(-3) ± √((-3)^2 - 4*(-1)10)) / (2(-1)) x = (3 ± √(9 + 40)) / (-2) x = (3 ± √49) / (-2) x = (3 ± 7) / (-2)

So, the critical points are x = 5 and x = -2.

Now, we create a sign chart and test the intervals:

markdown
Interval | x^2 + 3x - 10 | 10 - x^2 - 3x ---------------------------------------------- x < -2 | + | + -2 < x < 5 | - | + x > 5 | + | -

The solution is x < -2 or x > 5.

  1. (2x - 8)^2 - 4x(2x - 8) ≥ 0 First, factor the quadratic expression: (2x - 8)(2x - 8) - 4x(2x - 8) ≥ 0 (2x - 8)(2x - 8 - 4x) ≥ 0 (2x - 8)(-2x - 8) ≥ 0 -(2x - 8)^2 ≥ 0

Since the square of a real number is non-negative, the inequality is true for all real values of x. Thus, the solution is (-∞, +∞).

  1. x(x + 5) - 2 > 4x First, distribute x into the parenthesis: x^2 + 5x - 2 > 4x

Move all terms to one side of the inequality: x^2 + 5x - 4x - 2 > 0 x^2 + x - 2 > 0

Now, set the quadratic expression equal to zero and find the critical points: x^2 + x - 2 = 0

Using the quadratic formula, the critical points are: x = (-1 ± √(1 + 8)) / 2 x = (-1 ± √9) / 2 x = (-1 ± 3) / 2

So, the critical points are x = 1 and x = -2.

Now, we create a sign chart and test the intervals:

markdown
Interval | x^2 + x - 2 -------------------------------- x < -2 | - -2 < x < 1 | + x > 1 | +

The solution is x < -2 or x > 1.

  1. (1/3)x^2 + 3x + 6 < 0 To solve this inequality, let's first multiply both sides by 3 to clear the fraction: x^2 + 9x + 18 < 0

Now, set the quadratic expression equal to zero and find the critical points: x^2 + 9x + 18 = 0

Using the quadratic formula, the critical points are: x = (-9 ± √(9^2 - 4118)) / 2 x = (-9 ± √(81 - 72)) / 2 x = (-9 ± √9) / 2 x = (-9 ± 3) / 2

So, the critical points are x = -6 and x = -3.

Now, we create a sign chart and test the intervals:

markdown
Interval | x^2 + 9x + 18 -------------------------------- x < -6 | + -6 < x < -3 | - x > -3 | +

The solution is -6 < x < -3.

  1. x > (x^2/2) - 4x + 5/2 To solve this inequality, let's first move all terms to one side of the inequality: x - (x^2/2) + 4x - 5/2 > 0 (2x - x^2 + 8x - 5)/2 > 0 (10x - x^2 - 5)/2 > 0 (5 - x^2 + 10x)/2 > 0 (5 - x^2 + 10x) > 0 * 2 (Note: Multiplying both sides by a positive number doesn't change the inequality direction)

Now, set the quadratic expression equal to zero and find the critical points: x^2 - 10x + 5 = 0

Using the quadratic formula, the critical points are: x = (10 ± √(10^2 - 415)) / 2 x = (10 ± √(100 - 20)) / 2 x = (10 ± √80) / 2 x = (10 ± 4√5) / 2 x = 5 ± 2√5

So, the critical points are x = 5 + 2√5 and x = 5 - 2√5.

Now, we create a sign chart and test the intervals:

markdown
Interval | 5 - x^2 + 10x -------------------------------- x < 5 - 2√5 | - 5 - 2√5 < x < 5 + 2√5 | + x > 5 + 2√5 | -

The solution is x < 5 - 2√5 or x > 5 + 2√5.

To summarize the solutions:

  1. x < -2 or x > 5
  2. (-∞, +∞)
  3. x < -2 or x > 1
  4. -6 < x < -3
  5. x < 5 - 2√5 or x > 5 + 2√5
0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос