Вопрос задан 27.07.2023 в 06:00. Предмет Алгебра. Спрашивает Горбачёв Макс.

Лодка проплыла по течению реки на 11 км больше, чем против течения, затратив на весь путь 3 ч.

Зная, что скорость в стоячей воде равна 5 км/ч, а скорость течения - 2 км/ч, определитель, сколько всего километров проплыла лодка. Обозначив расстояние (в километрах), пройденное лодкой против течения реки, буквой х, выразите: а) расстояние (в километрах), пройденное лодкой по течению реки б) скорость лодки по течению и против течения реки. в) время движения лодки по течению и против течения реки Учитывая, что на весь путь лодка затратила 3 ч, составьте уравнение. Решите уравнение и запишите ответ.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Спицын Дмитрий.

1) 5 + 2 = 7 - скорость лодки по течению

2) 5 - 2 = 3 - скорость лодки против течения

х - расстояние, пройденное лодкой против течения

х + 11 - расстояние пройденное лодкой по течению

х : 3  - время движения ложки против течения

(х + 11) : 7 - время движения лодки по течению

Уравнение: х : 3 + (х + 11) : 7 = 3

7х + 3х + 33 = 63

10х = 30

х = 3

х + 11 = 14

3 + 14 = 17

Ответ: всего лодка проплыла 17 км

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте решим эту задачу шаг за шагом:

Пусть расстояние, пройденное лодкой против течения, равно х км. Тогда расстояние, пройденное лодкой по течению, будет равно (х + 11) км, так как оно больше на 11 км.

а) Расстояние (в километрах), пройденное лодкой по течению реки: Х + 11 км

б) Скорость лодки по течению и против течения реки: Скорость лодки в стоячей воде: 5 км/ч Скорость течения: 2 км/ч

Скорость лодки по течению: 5 + 2 = 7 км/ч Скорость лодки против течения: 5 - 2 = 3 км/ч

в) Время движения лодки по течению и против течения реки: Пусть время движения лодки по течению будет t1 часов. Тогда время движения лодки против течения будет (3 - t1) часов (так как на весь путь ушло 3 часа).

Теперь составим уравнение на основе времени и расстояния: Для движения против течения: время = расстояние / скорость t1 = х / 3

Для движения по течению: время = расстояние / скорость (3 - t1) = (х + 11) / 7

Теперь объединим оба уравнения и решим их: х / 3 + (х + 11) / 7 = 3

Умножим все части уравнения на 21 (наименьшее общее кратное 3 и 7), чтобы избавиться от знаменателей:

7х + 3(х + 11) = 63

7х + 3х + 33 = 63

10х = 63 - 33

10х = 30

х = 30 / 10

х = 3

Ответ: Лодка проплыла 3 км против течения реки.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос