Вопрос задан 25.07.2023 в 08:28. Предмет Алгебра. Спрашивает Берш Вова.

Построить график функции у=|x+2|-4

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Артеев Владимир.
График строго больше и меньше, так что выглядит он так. Вроде бы.....

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для построения графика функции у=|x+2|-4 сначала определим основные характеристики функции. Затем нарисуем график на координатной плоскости.

Функция y=|x+2|-4 представляет собой модуль разности x и (-2) минус 4.

  1. Найдем точку пересечения функции с осью y, когда x=0: y = |0 + 2| - 4 y = 2 - 4 y = -2

  2. Найдем точку пересечения функции с осью x, когда y=0: 0 = |x + 2| - 4 |x + 2| = 4 Для того чтобы модуль равнялся 4, выражение внутри модуля может быть как 4, так и -4.

    1. x + 2 = 4 => x = 4 - 2 => x = 2
    2. x + 2 = -4 => x = -4 - 2 => x = -6

Теперь имеем две точки: (-6, 0) и (2, 0).

  1. Проанализируем поведение функции между точками пересечения с осями.
    • При x < -2, выражение внутри модуля (x+2) отрицательно, и функция становится y = -(x + 2) - 4
    • При x > -2, выражение внутри модуля (x+2) положительно, и функция становится y = (x + 2) - 4

Таким образом, мы можем построить график функции у=|x+2|-4:

lua
| ---- | / \ y | / \ | -----------/--------------\--------- | / \ | / \ |------/--------------------------\----- / \ / \ / \ / \ -----|-----------------|------------------|-----> x -6 -2 2

На графике видно, что функция проходит через точки (-6, 0) и (2, 0) и имеет V-образную форму, открывающуюся вверх.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос