
X+8<3x^2-9x через дискриминант


Ответы на вопрос

Смотри..................




To solve the inequality using the discriminant, we first need to rewrite the inequality in the form . The discriminant is then used to determine the intervals where the inequality is satisfied.
Step 1: Rewrite the inequality in the form :
Step 2: Simplify the expression:
Now, the inequality is in the form , where , , and .
Step 3: Use the discriminant to find the critical points:
The discriminant () is given by:
Step 4: Find the critical points using the quadratic formula:
The critical points are given by
So, the critical points are and .
Step 5: Determine the intervals where the inequality is satisfied:
Now we need to determine in which intervals the quadratic expression is less than zero.
We have three intervals to consider:
a) b) c)
Step 6: Test a point in each interval to check if it satisfies the inequality:
a) Let's choose (a value less than ):
Since is positive, the inequality is not satisfied in this interval.
b) Let's choose (a value between and ):
Since is negative, the inequality is satisfied in this interval.
c) Let's choose (a value greater than ):
Since is positive, the inequality is not satisfied in this interval.
Step 7: Final conclusion:
The inequality is satisfied in the interval .


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili