Вопрос задан 24.07.2023 в 23:24. Предмет Алгебра. Спрашивает Krylova Sofya.

2)(3,5-х)(7х+2)+(3,5х-1)(7+2х)=-450 3)(8x+3)(1-0,9x)+7,4=(4x-5)(1-1,8x)

4)498+(2,7-5x)(6x-7)=(9-0,5x)(60x+1)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Новиков Захар.

1. 24.5x+7-7x^2-2x+24.5x+7x^2-7-2x=-450 ( 7 и 7x^2 сократились)

45x=-450

x= -10

2. 8x-7.2x^2+3-2.7x+7.4=4x-7.2x^2-5+9x

5.6x+10.4=13x-5

5.3x-13x=-5-10.4

-7.7x=-15.4

x=2

3. не правильно записано

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve each of these equations, we need to simplify the expressions, set them equal to zero, and then solve for the variable 'x'. Let's go through each of them step by step:

  1. (3.5 - x)(7x + 2) + (3.5x - 1)(7 + 2x) = -450

Step 1: Expand the expressions: (3.5 * 7x) + (3.5 * 2) - (x * 7x) - (x * 2) + (3.5x * 7) + (3.5x * 2x) - (1 * 7) - (1 * 2x) = -450

Step 2: Combine like terms: 24.5x + 7 - 7x^2 - 2x + 24.5x^2 - 7 - 2x = -450

Step 3: Simplify: 24.5x + 7 - 7x^2 - 2x + 24.5x^2 - 7 - 2x + 450 = 0

Step 4: Combine like terms again: 24.5x^2 + 20.5x + 450 = 0

Now, the equation is in standard quadratic form (ax^2 + bx + c = 0), and we can use the quadratic formula to solve for 'x':

x = (-b ± √(b^2 - 4ac)) / 2a

where a = 24.5, b = 20.5, and c = 450.

Calculate: x = (-(20.5) ± √((20.5)^2 - 4 * 24.5 * 450)) / (2 * 24.5)

x = (-20.5 ± √(420.25 - 44100)) / 49

x = (-20.5 ± √(-43679.75)) / 49

Since the discriminant (the value inside the square root) is negative, the equation has no real solutions. Therefore, there is no real value of 'x' that satisfies the equation.

  1. (8x + 3)(1 - 0.9x) + 7.4 = (4x - 5)(1 - 1.8x)

Step 1: Expand the expressions: (8x * 1) + (8x * (-0.9)) + (3 * 1) + (3 * (-0.9x)) + 7.4 = (4x * 1) + (4x * (-1.8)) + (-5 * 1) + (-5 * (-1.8x))

Step 2: Combine like terms: 8x - 7.2x + 3 - 2.7x + 7.4 = 4x - 7.2x - 5 + 9x

Step 3: Simplify: 8x - 7.2x - 2.7x - 4x + 9x + 3 + 7.4 + 5 = 0

Step 4: Combine like terms: 3.1x + 15.4 = 0

Step 5: Move constant term to the other side: 3.1x = -15.4

Step 6: Solve for 'x': x = -15.4 / 3.1 x = -5

So, the solution for this equation is 'x = -5'.

  1. 498 + (2.7 - 5x)(6x - 7) = (9 - 0.5x)(60x + 1)

Step 1: Expand the expressions: 498 + (2.7 * 6x) - (2.7 * 7) - (5x * 6x) + (5x * 7) = (9 * 60x) + (9 * 1) - (0.5x * 60x) - (0.5x * 1)

Step 2: Combine like terms: 498 + 16.2x - 18.9 - 30x^2 + 35x = 540x + 9 - 30x^2 - 0.5x

Step 3: Simplify: 498 + 16.2x - 18.9 - 30x^2 + 35x - 540x - 9 + 30x^2 + 0.5x = 0

Step 4: Combine like terms: -508.3x - 30.4 = 0

Step 5: Move constant term to the other side: -508.3x = 30.4

Step 6: Solve for 'x': x = 30.4 / (-508.3) x ≈ -0.0597 (rounded to four decimal places)

So, the solution for this equation is approximately 'x = -0.0597'.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос