
Найти область определения функции: y(x)=3/ x - 1/x^3.


Ответы на вопрос




To find the domain of a function, we need to identify any values of 'x' that would cause the function to be undefined. In this case, we have the function:
y(x) = 3/(x) - 1/(x^3)
The function is made up of two terms: 3/(x) and 1/(x^3). We need to consider the domain restrictions for each term separately.
The term 3/(x) is defined for all real numbers except when the denominator (x) becomes zero because division by zero is undefined. So, we need to exclude x = 0 from the domain.
The term 1/(x^3) is also defined for all real numbers except when the denominator (x^3) becomes zero. Again, we need to exclude all values of x that make x^3 equal to zero. Since x^3 = 0 has a single solution at x = 0, we also need to exclude x = 0 from the domain.
Now, combining both restrictions, we see that the function y(x) is undefined when x takes the value of 0.
Therefore, the domain (D) of the function y(x) is all real numbers except x = 0:
D = {x ∈ ℝ | x ≠ 0}


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili