
Решите неравенство lg ^2 100x- 5 lg x > 6.


Ответы на вопрос







To solve the inequality lg^2(100x) - 5lg(x) > 6, we'll first simplify the expressions using logarithm properties and then solve for x.
Here are the steps:
Step 1: Simplify lg^2(100x) to 2 * lg(100x) since lg^2(a) = 2 * lg(a): 2 * lg(100x) - 5lg(x) > 6
Step 2: Combine the logarithmic terms using logarithm rules: lg(100x)^2 - 5lg(x) > 6
Step 3: Express lg(100x)^2 as (lg(100x))^2, and simplify further: (lg(100x))^2 - 5lg(x) > 6
Step 4: Let's substitute lg(100x) with a variable, say a: a^2 - 5lg(x) > 6
Step 5: Move the constant term to the other side of the inequality: a^2 - 5lg(x) - 6 > 0
Step 6: Factor the quadratic expression: (a - 6)(a + 1) > 0
Now, we have a compound inequality in terms of a. To find the values of a, we'll solve the following two inequalities:
a - 6 > 0 (1) a + 1 > 0 (2)
Solving (1): a > 6
Solving (2): a > -1
Step 7: Now, recall that a = lg(100x). So, we have two inequalities for a:
lg(100x) > 6 (3) lg(100x) > -1 (4)
Step 8: We need to solve these two inequalities separately:
Solving (3): lg(100x) > 6
Converting to exponential form: 100x > 10^6
Solving for x: x > 10^6 / 100 x > 10000
Solving (4): lg(100x) > -1
Converting to exponential form: 100x > 10^(-1)
Solving for x: x > 10^(-1) / 100 x > 0.01
Step 9: Combining the results: x > 10000 and x > 0.01
Since x must satisfy both inequalities, the final solution is x > 10000.
Therefore, the solution to the original inequality is x > 10000.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili