
Решите систему2+x<0 2x+1<0


Ответы на вопрос

решение представлено на фото




To solve the system of inequalities, we need to find the values of x that satisfy both inequalities simultaneously. Let's solve them one by one:
2 + x < 0: Subtract 2 from both sides: x < -2
2x + 1 < 0: Subtract 1 from both sides: 2x < -1
Finally, divide both sides by 2. Since we're dividing by a negative number, the inequality sign flips: x > -1/2
Now, we need to find the values of x that satisfy both inequalities (i.e., the values of x that are simultaneously less than -2 and greater than -1/2). To do this, we'll find the intersection of the two solution sets:
The solution set for x < -2 is (-∞, -2). The solution set for x > -1/2 is (-1/2, ∞).
The intersection of these two sets is the set (-1/2, -2). This means that x must be between -1/2 and -2, exclusive of both endpoints, in order to satisfy both inequalities.
So, the solution for the system of inequalities is: -1/2 < x < -2.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili