
Доказать: a - 3√ab + 4b ≥ √ab


Ответы на вопрос

Пусть: a>=0 ; b>=0
a-3√ab +4b>=√ab
a-4√ab +4b>=0
тк a>=0 ; b>=0 , то существуют квадратные корни: √a и √b
Тогда это неравенство можно представить в виде:
(√a)^2 - 2*√a *(2√b) +(2*√b)^2>=0
(√a-2√b)^2>=0 ,тк квадрат числа неотрицателен.
ЧТД.



To prove the inequality , we need to use the properties of inequalities and basic algebraic manipulations. Let's proceed step by step:
Step 1: Simplify the expression on the left side of the inequality.
Step 2: Get a common denominator for the terms involving and so that we can compare the two sides of the inequality effectively.
Step 3: Now, rewrite the left-hand side of the inequality using the common denominator .
Step 4: Combine like terms on the left-hand side of the inequality.
Now we have the inequality in the following form:
Step 5: Now, let's assume that and are positive real numbers. In that case, and . Thus, we can divide both sides of the inequality by without changing the inequality sign.
Step 6: Simplify both sides.