
(x+7)(x-6)(x-11)>0 решите неравенство


Ответы на вопрос

Метод интервалов, фото




To solve the inequality , we need to find the intervals where the expression is positive.
To do this, we'll analyze the sign of each factor , , and separately. Then, we'll determine the intervals where the product of these factors is greater than zero.
Step 1: Find critical points where the factors change sign:
- =>
- =>
- =>
Step 2: Create intervals based on the critical points and test each interval: We'll test each interval by picking a test point within that interval and checking the sign of at that point.
Interval 1: Choose (a number less than -7): The product is negative in this interval.
Interval 2: Choose (a number between -7 and 6): The product is positive in this interval.
Interval 3: Choose (a number between 6 and 11): The product is negative in this interval.
Interval 4: Choose (a number greater than 11): The product is positive in this interval.
Step 3: Combine the results: From the tests, we see that the expression is positive in two intervals: and .
Step 4: Write the solution: The solution to the inequality is:
So, the values of that satisfy the inequality are all real numbers in the open intervals and .


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili