
1)Упрастить выражение:(а\а-1-2\а+1)\а"+1\а"+2а+1 2) (2\b-2-8\b"-4-1\b+2)*1\b"+4b+4 3)Решить
неравенство: 3х"-2х-5>=0 4) (2-x)*(7x"-10х+3)<0 5)Решить уравнения: корень b+2=2+корень b-6 1g(x"+7)=2+1g(x-4) (log2x)"-3log2x+2=0 (x-1)*(x"-4)*x=0 6)Стороны треугольника абс совпадают с отрезками лежащими на прямых : 2х+у-7=0 х-3у+14=0 х+4у-14=0 Найти: координаты вершин треугольника. Периметр треугольника. cos A. Периметр треугольника АВС

Ответы на вопрос

Вот решение.Прости что долго)!"




To simplify the expressions and solve the equations and inequalities, let's go step by step:
- Simplify the expression: (а\а-1-2\а+1)\а"+1\а"+2а+1
First, simplify the fractions within the parentheses: (а/(а-1) - 2/(а+1)) / (а + 1/(а+2) + 1)
To combine fractions with different denominators, find a common denominator, which is (а+1)(а+2):
[(а(а+2) - 2(а-1)) / ((а-1)(а+1)(а+2))] / [(а(а+2)(а+2) + (а+1)(а+2) + 1)]
Now, simplify further: [(а^2 + 2а - 2а + 2) / ((а-1)(а+1)(а+2))] / [(а^2 + 2а^2 + 2а + 2 + 1)]
Combine like terms: [(а^2 + 2) / ((а-1)(а+1)(а+2))] / [(3а^2 + 2а + 3)]
To divide fractions, invert the second fraction and multiply: [(а^2 + 2) / ((а-1)(а+1)(а+2))] * [(3а^2 + 2а + 3) / 1]
The result is the simplified expression.
- Simplify the expression: (2\b-2-8\b"-4-1\b+2)*1\b"+4b+4
First, simplify the fractions within the parentheses: (2/b - 2 - 8/b - 4 - 1/b + 2) * 1/b + 4b + 4
Combine like terms in the parentheses: [(2 - 8 + 2 - b) / b] * [1/b + 4b + 4]
Simplify further: (-4 / b) * (1/b + 4b + 4)
Distribute the (-4 / b) to each term in the second parentheses: (-4 / b) * (1/b) + (-4 / b) * 4b + (-4 / b) * 4
The result is the simplified expression.
- Solve the inequality: 3x - 2x - 5 >= 0
Combine like terms: x - 5 >= 0
Add 5 to both sides to isolate x: x >= 5
The solution for the inequality is x >= 5.
- Solve the inequality: (2 - x)*(7x^2 - 10x + 3) < 0
First, factorize the quadratic expression: (2 - x)(7x^2 - 10x + 3) = -(x - 2)(7x - 3)*(x - 1)
Now, we have three critical points: x = 1, x = 2, and x = 3/7.
Create a number line and test intervals:
Interval 1: x < 1 Pick x = 0, substitute into the expression: -(0 - 2)(70 - 3)*(0 - 1) = -6 < 0 (True)
Interval 2: 1 < x < 2 Pick x = 1.5, substitute into the expression: -(1.5 - 2)(71.5 - 3)*(1.5 - 1) = 15/4 > 0 (False)
Interval 3: 2 < x < 3/7 Pick x = 0.5, substitute into the expression: -(0.5 - 2)(70.5 - 3)*(0.5 - 1) = -105/16 < 0 (True)
Interval 4: x > 3/7 Pick x = 1, substitute into the expression: -(1 - 2)(71 - 3)*(1 - 1) = 0 (False)
The solution to the inequality is 0 < x < 1 and x > 3/7.
- Solve the equations: a) √(b + 2) = 2 + √(b - 6)
Square both sides to eliminate the square roots: b + 2 = 4 + 2√(b - 6) + (b - 6)
Combine like terms: 2√(b - 6) = 8
Divide by 2: √(b - 6) = 4
Square both sides again: b - 6 = 16
Add 6 to both sides: b = 22
The solution to the equation is b = 22.
b) log2x - 3log2x + 2 = 0
Combine the logarithms using the properties of logarithms: log2x - log2(x^3) + 2 = 0
Use the rule: log(a) - log(b) = log(a/b): log2(x/(x^3)) + 2 = 0
Simplify: log2(1/x^2) = -2
Now, rewrite in exponential form: 1/x^2 = 2^(-2)
Simplify: 1/x^2 = 1/4
Now, solve for x: x^2 = 4
Take the square root of both sides: x = ±2
So the solutions are x = 2 and x = -2.
c) (x - 1)*(x^2 - 4)*x = 0
First, find the roots of the equation by setting each factor to zero:
x - 1 = 0 ⇒ x = 1 x^2 - 4 = 0 ⇒ x^2 = 4 ⇒ x = ±2 x = 0
The solutions are x = 1, x = 2, x = -2, and x = 0.
- Find the coordinates of the triangle's vertices, the triangle's perimeter, and cos A:
Given equations of the lines:
- 2x + y - 7 = 0
- x - 3y + 14 = 0
- x + 4y - 14 = 0
To find the coordinates of the vertices, we need to find the points of intersection of these lines.
Solve equations (1) and (2) simultaneously: 2x + y = 7 x - 3y = -14
Multiply the second equation by 2 and add it to the first equation to eliminate x: 2x + y + 2x - 6y = 7 - 28 4x - 5y = -21
Solve for x: 4x = 5y - 21 x = (5y - 21)/4
Substitute x into equation (2) and solve for y: (5y - 21)/4 - 3y = -14 5y - 21 - 12y = -56 -7y = -35 y =


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili