
сад размерами 40 м на 20 м и имеющий прямоугольную форму хотят засадить деревьями так чтобы со всех
сторон от дерева было расстояние минимум 2 м до следующего дерева или до забора . Какое максимальное количество деревьев можно посадить в саду чтоб условие не нарушалось?

Ответы на вопрос

Ответ: 56
Объяснение: Начиная от забора до забора промежутков на 1 больше, чем деревьев, поэтому:
1) 20:2-1=4 ( дер.) - число деревьев по ширине участка.
2)40:2-1=19(дер.) -число деревьев по длине участк.
3) 19*4=36(дер.)
Ответ: 36



Для определения максимального количества деревьев, которые можно посадить в саду, учитывая условия, мы должны найти оптимальное расположение деревьев. В данном случае, деревья можно расположить в виде прямоугольной сетки с расстоянием 2 метра между деревьями по обеим осям (длине и ширине сада).
Количество деревьев вдоль длины сада (40 м) равно: 40 м / 2 м = 20 деревьев. Количество деревьев вдоль ширины сада (20 м) равно: 20 м / 2 м = 10 деревьев.
Таким образом, максимальное количество деревьев, которые можно посадить в саду, составляет: 20 деревьев * 10 деревьев = 200 деревьев.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili