Вопрос задан 13.07.2023 в 18:03. Предмет Алгебра. Спрашивает Топская Айлин.

Найдите все целые значения параметра , при каждом из которых уравнение имеет хотя бы один корень,

и укажите корни уравнения для каждого из найденных значений .
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Паньков Стас.

cos^2\frac{x}{2} =1+cosx\\ \\ sin^2x=1-cos^2x

></p>              <p></p>              <p>Получаем квадратное уравнение относительно </p>              <p>cosx=t</p>              <p><img src=

Это уравнение имеет хотя бы один корень, если D ≥0

D=64+16(7+3a)=16(11+3a)

D≥0⇒  11+3a≥0⇒  a≥ -11/3

t₁=1- (√(11+3а))/2    или   t₂=1+ (√(11+3а))/2

Обратная замена приводит к уравнениям вида cos=t₁  или   cosx=t₂

Чтобы эти уравнения имели хотя бы один корень, необходимо, что бы

-1 ≤ t₁ ≤1    или  -1 ≤ t₂ ≤1  

Решаем неравенства:

-1 ≤1+ (√(11+3а))/2  ≤1

-2≤√(11+3а))/2≤0

-4≤√(11+3а)≤0

Решением неравенства является

11+3a=0

a=-11/3

t₁=t₂=1/2

cosx=1/2

x=±(π/3)+2πn, n∈Z

Неравенство

-1 ≤1- (√(11+3а))/2  ≤1

также приводит к ответу a=-11/3

О т в е т. При а=-11/3

x=±(π/3)+2πn, n∈Z

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

К сожалению, в вашем сообщении не указано уравнение, для которого необходимо найти целые значения параметра и его корни. Пожалуйста, предоставьте уравнение, и я с радостью помогу вам найти целые значения параметра и соответствующие корни.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос