
Решить квадратное неравенство: 1) х² - 3x + 2 <(или равно) 0; 2) х² — 3х – 4 >(или равно)
0;3) 3х² - 5х - 2 > 0Подробно пожалуйста 

Ответы на вопрос

Ответ:
1)x∈[1,2]
2)x∈(-∞,-1]∪[4,+∞]
3) x∈(-∞,-1/3)∪(2,+∞)
Объяснение:
1)x²-x-2x+2≤0
x(x-1)-2(x-1)≤0
(x-1)(x-2)≤0
x-1≤0
x-2≥0
x-1≥0
x-2≤0
x≤0
x≥2
x≥1
x≤2
2) x²+x-4x-4≥0
x(x+1)-4(x+1)≥0
(x+1)(x-4)≥0
x+1≥0
x-4≥0
x+1≤0
x-4≤0
x≥-1
x≥4
x≤-1
x≤4
3) 3x²+x-6x-2>0
x(3x+1)-2(3x+1)>0
(3x+1)(x·2)>0
3x+1>0
x-2>0
3x+1<0
x-2<0
x>-1/3
x>2
x<-1/3
x<2



Конечно, давайте решим каждое из данных квадратных неравенств по очереди.
Для начала найдем корни квадратного уравнения . Для этого воспользуемся формулой дискриминанта:
Дискриминант , где у нас , , .
.
Поскольку , уравнение имеет два различных корня:
Теперь посмотрим на знаки между этими корнями и внутри них. Для этого можно построить таблицу знаков:
Из этой таблицы видно, что неравенство выполняется на интервале , то есть корни уравнения включены в решение. Таким образом, решение этого неравенства: .
Аналогично, найдем корни уравнения :
.
Поскольку , уравнение имеет два различных корня:
Таблица знаков:
Из таблицы видно, что неравенство выполняется на интервалах и , то есть за пределами корней уравнения. Решение этого неравенства: .