Вопрос задан 05.07.2023 в 21:28. Предмет Алгебра. Спрашивает Лахва Міша.

X^2-2xy+y^2=4 |x+y|=2​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Тупиков Сергей.

Ответ:

x^{2} -2xy+y^{2}=4

|x+y|=2

x+y=2 иди x+y=-2

Ответ: пара параллельных прямых у=2-х или у=-2-х

Объяснение:

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

The given equations are:

  1. x22xy+y2=4x^2 - 2xy + y^2 = 4
  2. x+y=2|x + y| = 2

Let's analyze these equations one by one:

Equation 1 represents a conic section, specifically an ellipse. It has the form of a general equation for an ellipse:

Ax2+Bxy+Cy2+Dx+Ey+F=0Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0

Comparing this general equation with the given equation x22xy+y2=4x^2 - 2xy + y^2 = 4, we can see that A=1A = 1, B=2B = -2, C=1C = 1, D=0D = 0, E=0E = 0, and F=4F = -4.

The discriminant B24ACB^2 - 4AC of the general equation determines the type of conic section. In this case, B24AC=(2)24(1)(1)=44=0B^2 - 4AC = (-2)^2 - 4(1)(1) = 4 - 4 = 0, which means that the given equation represents a degenerate conic section, specifically a pair of intersecting lines. This is because the discriminant being zero indicates that the ellipse has been "squished" into two lines that intersect.

Equation 2 represents an absolute value equation involving x+yx + y. The equation x+y=2|x + y| = 2 means that the sum of xx and yy is either 2 or -2, because the absolute value of a number can be the number itself or its negation.

Now let's combine the two equations to see how they relate:

From equation 2, we have two cases:

  1. x+y=2x + y = 2
  2. x+y=2x + y = -2

Let's solve each case separately:

Case 1: x+y=2x + y = 2 Solving this equation for yy, we get y=2xy = 2 - x. Substituting this value of yy into equation 1, we get: x22x(2x)+(2x)2=4x^2 - 2x(2 - x) + (2 - x)^2 = 4 Simplify and solve for xx: x24x+4+x24x+4=4x^2 - 4x + 4 + x^2 - 4x + 4 = 4 2x28x+4=02x^2 - 8x + 4 = 0 x24x+2=0x^2 - 4x + 2 = 0

This quadratic equation does not have rational solutions, so the solutions for xx will be complex.

Case 2: x+y=2x + y = -2 Solving this equation for yy, we get y=2xy = -2 - x. Substituting this value of yy into equation 1, we get: x22x(2x)+(2x)2=4x^2 - 2x(-2 - x) + (-2 - x)^2 = 4 Simplify and solve for xx: x2+2x2+4x+4+x2+4x+4=4x^2 + 2x^2 + 4x + 4 + x^2 + 4x + 4 = 4 4x2+8x+8=04x^2 + 8x + 8 = 0 x2+2x+2=0x^2 + 2x + 2 = 0

This quadratic equation also does not have real solutions, so the solutions for xx will be complex.

In both cases, the solutions for xx are complex numbers, which means there are no real solutions that satisfy both equations. The intersection of the ellipse and the lines defined by x+y=2|x + y| = 2 in the real plane is empty.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос