Вопрос задан 05.07.2023 в 19:58. Предмет Алгебра. Спрашивает Антоненко Богдан.

Квадратичная функция Определить наименьшее и наибольшее значение функции f (x) = -x^2 + 2x - 2 в

интервале <-1,2>
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Повираева Олечка.

Ответ: Наименьшее значение -5. Наибольшее -1.

Объяснение:

На картинке видим наш график, а также 2 точки. Наименьшее значение -5. Наибольшее -1.

Также можно решить через производную.

f`(x) = -2x + 2

2x = 2

x = 1 - критическая точка.

Теперь требуется проверить значения y этой точке, а также края графика.

Подставляем в функцию:

при x = 1    = > y = 1 + 2 - 2 = -1

при х = -1   => у = -1 - 2 - 2 = -5

Далее проверять не стану, так как понятно.


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы определить наименьшее и наибольшее значение функции f(x) = -x^2 + 2x - 2 на интервале <-1, 2>, давайте выполним следующие шаги:

  1. Найдем вершину параболы, так как это будет точка экстремума (наименьшее или наибольшее значение функции).

Вершина параболы имеет координаты x = -b / (2a), где уравнение параболы имеет вид ax^2 + bx + c.

В данном случае a = -1, b = 2, c = -2. Подставив значения, получим x = -2 / (2 * -1) = 1.

Теперь подставим значение x = 1 в уравнение f(x): f(1) = -1^2 + 2 * 1 - 2 = -1 + 2 - 2 = -1.

Итак, вершина параболы находится в точке (1, -1).

  1. Поскольку вершина параболы находится между -1 и 2 (включительно), наименьшее и наибольшее значения функции будут на концах интервала и в вершине.

a. Подставим x = -1 в уравнение f(x): f(-1) = -(-1)^2 + 2 * (-1) - 2 = -1 - 2 - 2 = -5. b. Подставим x = 2 в уравнение f(x): f(2) = -2^2 + 2 * 2 - 2 = -4 + 4 - 2 = -2.

Сравнив полученные значения: -5, -1, -2, видно, что наименьшее значение функции -5 достигается при x = -1, а наибольшее значение -1 достигается в вершине параболы при x = 1.

Итак, наименьшее значение функции на интервале <-1, 2> равно -5, а наибольшее значение равно -1.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Алгебра 4 Лисов Андрей

Последние заданные вопросы в категории Алгебра

Задать вопрос