
Given that tan(x − π/3) = 1, solve x for x ∈(0°, 180°)


Ответы на вопрос

Replacement:
Reverse replacement:
Since i. e.
then:
Thus
Therefore,
Answer:



To solve the equation tan(x - π/3) = 1 for x ∈ (0°, 180°), we can use the properties of the tangent function and some trigonometric identities. Here's the step-by-step solution:
Start with the given equation: tan(x - π/3) = 1.
Use the identity tan(π/4) = 1. By comparing this with the given equation, we can see that x - π/3 must be equal to π/4.
x - π/3 = π/4.
Add π/3 to both sides of the equation:
x = π/4 + π/3.
Find a common denominator for π/4 and π/3, which is 12:
x = (3π + 4π) / 12.
Simplifying the numerator:
x = 7π / 12.
The value of x is in radians. To convert it to degrees, multiply by 180/π:
x = (7π / 12) * (180/π).
Simplifying:
x = 105°.
Check if the solution satisfies the given condition that x is in the interval (0°, 180°). In this case, 105° is within the specified range.
Therefore, the solution to the equation tan(x - π/3) = 1 for x ∈ (0°, 180°) is x = 105°.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili