Вопрос задан 30.06.2023 в 22:41. Предмет Алгебра. Спрашивает Гобайко Арина.

Как не выполняя построения,найти точки пересечения графиков линейных функций? пожалуйста

объясните подробно и покажите на примере
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Серкебаев Ермек.
Всего лишь нужно приравнять функции:
Например есть функции y = x+1 и y = 2x-5
Тогда:
x+1 = 2x-5
x = 6
x точки пересечения мы нашли
Далее подставляем в любое из уравнений этот х
y = 6+1 = 7
И мы нашли y точки пересечения
Ответ:
(6;7)
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для поиска точек пересечения графиков линейных функций без их построения можно воспользоваться методом подстановки или методом равенства значений. Давайте разберем оба метода на примере.

Предположим, у нас есть две линейные функции:

  1. f(x)=ax+bf(x) = ax + b
  2. g(x)=cx+dg(x) = cx + d

И мы хотим найти точку пересечения (x0,y0)(x_0, y_0), то есть значение x0x_0, на котором оба графика имеют одинаковое значение y0y_0.

Метод подстановки:

  1. Приравняйте выражения f(x)f(x) и g(x)g(x):

    ax+b=cx+dax + b = cx + d

  2. Решите полученное уравнение относительно xx:

    axcx=dbax - cx = d - b
    x(ac)=dbx(a - c) = d - b
    x=dbacx = \frac{d - b}{a - c}

  3. Подставьте найденное значение xx в одно из уравнений f(x)f(x) или g(x)g(x), чтобы найти соответствующее значение yy:

    Например, используем f(x)f(x):

    y0=f(x0)=adbac+by_0 = f(x_0) = a \cdot \frac{d - b}{a - c} + b

Пример:

Рассмотрим графики двух функций:

  1. f(x)=2x+3f(x) = 2x + 3
  2. g(x)=x+8g(x) = -x + 8

Найдем точку их пересечения, используя метод подстановки:

  1. Приравняем выражения:

    2x+3=x+82x + 3 = -x + 8

  2. Решим уравнение относительно xx:

    2x+x=832x + x = 8 - 3
    3x=53x = 5
    x=53x = \frac{5}{3}

  3. Подставим значение xx в f(x)f(x), чтобы найти yy:

    y0=f(53)=253+3=103+3=193y_0 = f\left(\frac{5}{3}\right) = 2 \cdot \frac{5}{3} + 3 = \frac{10}{3} + 3 = \frac{19}{3}

Таким образом, точка пересечения графиков этих функций имеет координаты (53,193)\left(\frac{5}{3}, \frac{19}{3}\right).

Метод равенства значений:

  1. Приравняйте выражения f(x)f(x) и g(x)g(x):

    ax+b=cx+dax + b = cx + d

  2. Приравняйте также значения yy для обоих функций:

    ax+b=yax + b = y
    cx+d=ycx + d = y

  3. Решите систему уравнений относительно xx и yy.

Пример:

Рассмотрим те же функции:

  1. f(x)=2x+3f(x) = 2x + 3
  2. g(x)=x+8g(x) = -x + 8

Найдем точку их пересечения, используя метод равенства значений:

  1. Приравняем выражения f(x)f(x) и g(x)g(x):

    2x+3=x+82x + 3 = -x + 8

  2. Приравняем значения yy:

    2x+3=x+8=y2x + 3 = -x + 8 = y

  3. Решим систему уравнений относительно xx и yy:

    2x+3=y2x + 3 = y
    x+8=y-x + 8 = y

    Так как оба уравнения равны yy, мы можем приравнять их:

    2x+3=x+82x + 3 = -x + 8

    Решив это уравнение, получим x=53x = \frac{5}{3}.

  4. Подставим xx в одно из уравнений для нахождения yy 0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Предметы
Задать вопрос